
SEED Labs – Android Device Rooting Lab 1

Android Device Rooting Lab

Copyright © 2018 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

Android devices do not allow their owners to have the root privilege on the device. This is fine for normal
customers, but for users who want to make deep customizations on their devices, this is too restrictive. There
are ways to overcome these restrictions, most of which require the root privilege on the device. The process
of gaining the root device on Android devices is called rooting. Being able to root Android devices is a very
useful skill for security experts.

The objective of this lab is two-fold. First, through this lab, students will get familiar with the process
of device rooting and understand why certain steps are needed. Many people can root Android devices, but
not many people fully understand why things have to be done in a particular way. Second, the entire rooting
mechanism involves many pieces of knowledge about the Android system and operating system in general,
so it serves as a great vehicle for students to gain such in-depth system knowledge. In this lab, we will ask
students to develop a complete rooting package from scratch, and demonstrate how to use the package to
root the Android VM provided by us.

2 Background Knowledge

2.1 Background Knowledge about Rooting

The purpose of rooting an Android device is to gain the root privilege inside the Android OS. There are many
reasons why people want to do that. For example, Android devices often come with many pre-installed
system apps that are useless most of the time, but they take storage space, RAM, system resources, and
drain device battery. These useless apps are generally known as bloatware; they are installed in protected
places, and only the root user (or other privileged user) can remove them. Although the device is owned by
a user, the user is not allowed to run code using the root privilege. Users can only get the root privilege if the
device is rooted. In general, rooting allows users to customize their phones, removing restrictions, adding
new features, and making changes to the system. There are several approaches to root an Android device,
and we will discuss them in more details in this lab. Figure 1 provides a summary of these approaches.

Modifying Android from inside. The first rooting approach is doing it from inside Android. For an un-
rooted device, everything that the user runs is running with a normal user ID (not root). Therefore, rooting
from inside Android means that the user has to gain the root privilege as a normal user. Obviously, this
is impossible for a perfectly implemented operating system. However, the chances are that Android may
not be perfectly implemented, so there might exist vulnerabilities in the system. If these vulnerabilities are
inside the kernel or daemons running with the root privilege, users can exploit these vulnerabilities to gain
the root privilege. This is one of the techniques to root Android devices.

In the past, there were many rooting exploits, such as RageAgainstTheCage, which took advantage
of RLIMIT NPROC max, the value specifying how many processes a given UID can run. This exploit first
uses "adb shell" to run a shell on the device via the adb daemon. The UID of the shell will be 2000.

SEED Labs – Android Device Rooting Lab 2

The exploit then forks new processes until the number of processes have reached the limit and the fork call
will fail. At this point, the exploit kills the adbd daemon, and then reconnect to it using "adb shell".
This causes the system to restart the adb daemon. When adb is started, it always has the root privilege,
but it will drop the privilege to UID 2000 using setuid(2000). Unfortunately, the UID 2000 has already
used up its process quota, so the call will fail. Unfortunately, the adb daemon fails to handle the failure
correctly: instead of exiting, it keeps running, while retaining the root privilege. As results, the "adb
shell" command will give users a root shell. This vulnerability has already been fixed after Android 2.2.

Modify Android OS

Find Vulnerability in
Android OS that escalate

User Privilege

Gives root shell

Update Android System
Image by applying OTA
(Over The-Air) updates

Getting root shell is
breakthrough, you can do
whatever with root shell to
Android file system

Unpack Android System
Image (system.img) or get

it from manufacturer or
trusted third party provider

Unlock Bootloader

Replace Stock Recovery
with Custom Recovery

Modify system image by
changing build type or by

adding some SUID su binary

Change the entire Android
System Image

Custom Recovery will run
update-binary from the
OTA package to apply

updates Commercial Android devices uses User
build which disallows root access via
shell. But It can be turned into the
userdebug or engineering build which
gives root access through the shell by
setting ro.secure = 0.

Gives root shell

You need to Modify Android OS because
Stock Android OS doesn’t provide root
privilege to the user out of the box

After Booting into Android
OS

Before Booting into
Android OS

Basically update-
binary is a binary file
that runs updater-
script that guides
recovery to install files
from OTA package to
main Android OS to
achieve rooting.

Gives root shell

Stock Recovery only
allows you to apply OTA
updates authorized by
manufacturer. We need
to replace Stock Recovery
with Custom Recovery to
apply our own OTA
updates which bypasses
signature verification

Unlocked bootloader allows
you to run your own OS by
flashing the image file to
specific Android Partition.

Rooting Overview

Figure 1: Rooting Android Devices

Modifying Android from outside. Since Android’s access control prevents a normal user from modifying
the part of the system that is only modifiable by the root, doing it inside Android is going to subject to the
access control. However, if we can do it from outside, we are not subject to Android’s access control any
more. This leads to the second approach, which is to directly modify Android’s system files from outside.

Assume that another operating system is installed on your Android device. This means that the device
has a dual-boot configuration, allowing you to boot into any of these two operating systems when the device
powers on. If we boot into this second operating system, and become the root for this OS, we can mount
the partition used by the Android system. Once this partition is mounted, we can access all the files stored

SEED Labs – Android Device Rooting Lab 3

inside the partition. Because Android is not running, its access control has no use. Therefore, we can make
arbitrary changes to its files. For example, we can place some programs in the system, and modify Android’s
initialization scripts, and ask Android to run our programs as a root during its initialization process.

The good news is that most Android devices do have the second operating system installed, and it is
called recovery OS. As the name indicates, it is meant for recovery purposes, but it is mostly used for updat-
ing operating system. The bad news is that this operating system also has access controls, preventing users
from running arbitrary programs or commands. Recovery OS is typically placed on devices by vendors,
who use the OS to update Android, but not wanting users to make arbitrary updates. To enforce that, re-
covery OSes do not give users a shell prompt, preventing users from running arbitrary commands. Instead,
they take a package provided from outside (either from users or downloaded from the Internet); the package
contains the commands and files needed for updating the Android OS. This mechanism is widely used for
OS update, and it is called Over-The-Air (OTA) update. The package is called OTA package, which has a
standard file structure that we will talk about later.

Most recovery OSes only accept the packages made by the vendors to ensure that any update to the
Android OS is approved by the vendors. This is enforced using digital signatures, i.e., the package needs to
be signed by vendors, or it will not be accepted by the recovery OS. This protection becomes a roadblock for
rooting, because the package that we use for rooting purposes will not come from the vendor of the device.
We need to find ways to bypass this access control.

Reinstall recovery OS. Instead of bypassing the access controls of the recovery OS, the easiest way is
to replace the entire stock recovery OS with another recovery OS that does not have such access controls.
This new recovery OS, called custom recovery OS, will not include the signature verification part, so we can
provide any OTA packages to the recovery OS. This will allow us to make arbitrary changes to the Android
partition.

Here is another bad news. There is another access control that prevents us from replacing the stock
recovery OS, and this time it is the bootloader. Bootloader is a low level code that loads an operating system
or some other system software for the computer after the computer is powered on. When a bootloader is
“locked”, it will simply load one of the OSes that is already installed on the device, leaving no chances for
users to modify any of the pre-installed OSes. If a bootloader can be unlocked, it will add another option,
which allows users to install custom operating systems on the device, as well as replacing the existing ones.
The process is often referred to as flashing custom OS.

Manufacturers usually make their bootloaders locked out of the box because they want to be in control
of what software is running the device. However, most manufacturers do provide ways for users to unlock
the bootloader on their devices, provided that by doing so users will lose all of their data, as well as the
warranties.

2.2 Background Knowledge about OTA

OTA is a standard technique for devices to update Android operating systems. Since rooting also needs to
update Android OS, OTA becomes a popular choice. In this section, we will describe the structure of the
OTA package. Students need to build their own OTA package from the scratch in this lab.

OTA package is just a zip file and its structure is depicted in Figure 2. Of particular interest to this
lab is the META-INF folder, which includes signature and certificates of the package along with two very
important files named update-binary and updater-script.

• META-INF/com/google/android/update-binary: This binary is executed by the recov-
ery OS to apply OTA updates; it loads and execute updater-script.

SEED Labs – Android Device Rooting Lab 4

Real OTA Package

META-INF/

CERT.RSA

CERT.SF

com/

google/

android/

update-binary

updater-script

MANIFEST.MF

arm/

x86/

system/

boot/

….

All of these folders are optional and need not required to be a
part of every OTA package. Vendors put necessary directory
files which to be used/copied/extracted during the update.

Figure 2: OTA Structure

• META-INF/com/google/android/updater-script: This is an installation script which is
interpreted by update-binary. It is written using a script language called Edify, which describes
the required action to be performed to apply updates.

After signature verification on the OTA package, the recovery OS extracts the update-binary exe-
cutable from the OTA package to the /tmp directory and runs it by passing three arguments as follows:

update-binary version output package
where, version is the version of recovery API,

output is the command pipe that update-binary uses to communicate
with recovery,

package is the path of the OTA package,

An Example would be: update-binary 3 stdout /sdcard/ota.zip

On a successful execution of updater-script, the recovery OS copies the execution logs to the
/cache/recovery/ directory and reboots into the Android OS. Execution logs can be accessible from
the Android OS after rebooting. This is how android system is updated by using OTA package.

3 Lab Environment

In this lab, we assume that the bootloader on the device can be unlocked, and the stock recovery OS can
be replaced. Replacing the recovery OS in the VM environment is quite difficult, and it is not within the
scope of this lab. The Android VM that you download from our web site already has a custom recovery OS

SEED Labs – Android Device Rooting Lab 5

installed. Actually, we simply use Ubuntu 16.04 as the “recovery OS”. Technically, this is not a recovery
OS; it is just another OS installed on the device. We use this general-purpose OS to emulate what users
can do using a custom recovery OS. Once users boot into this OS, they can run any arbitrary commands (as
root), and be able to make arbitrary changes to the Android partition.

Students who have a physical Android device and want to know how to root a real device, they can
follow our guidelines in Section 7. However, other than the step to replace the recovery OS, everything else
is the same as what we do in this lab.

Another important thing to know is that our Android VM is already rooted. That was done when we
built the VM from the Android source code. Our VM build is actually a userdebug build, and several doors
were built into the VM to allow root access. We choose this build because several of our other labs require
the root access. Real Android devices use user build, which do not have these doors for root access. Details
about these doors can be found in our VM manual. In this lab, students are not allowed to use those doors
to gain the root access; they have to use the OTA mechanism to achieve that.

4 Lab Task 1: Build a simple OTA package

In this lab, students will build a simple OTA package from scratch, and use it to root Android OS. We divide
this complicated task into several tasks, each focusing on a specific goal. Here are the goals that we would
like to achieve:

• How to inject a program into the Android OS from the recovery OS?

• How to get our injected program to run automatically, and with the root privilege?

• How to write a program that can give us the root shell?

In this Task 1, we focus on how to inject a program into the Android OS from the recovery OS, and then
get Android to run our injected program using the root privilege. At this point, we are not focusing on the
actual thing that we can do in this program, as long as it is something that requires the root privilege. For the
sake of simplicity, let us simply create a dummy file in the /system folder of Android, which requires the
root privilege (the /system folder is not writable by normal users). The following command puts a word
“hello” in /system/dummy (we put this command in a shell script file called dummy.sh):

echo hello > /system/dummy

Step 1: Write the update script. The update-binary file in the OTA package is the executable file
that will be first executed by the recovery OS. This is where we get the OS update started. This file can be
a binary executable, or just a simple script file. For the latter case, the recovery OS should already have the
binary executable (e.g. bash) to execute the script file. In this task, we will simply use a shell script, as our
recover OS (Ubuntu) does have bash installed.

Our purpose for update-binary is two-fold: (1) inject our dummy.sh program into the Android
OS, and (2) change the Android OS configuration file, so our dummy.sh can be automatically executed
with the root privilege when Android boots up. For the first task, students need to figure out where to place
dummy.sh, and how to set up its permissions. It should be noted that the file has to be placed into the
Android partition, which is already mounted to the /android directory in the recovery OS.

For the second purpose, we need to get dummy.sh to run automatically when Android boots up, and we
need to make sure that it runs with the root privilege. There are many ways to achieve this. In this task, we

SEED Labs – Android Device Rooting Lab 6

use one approach related to Linux, and in the next task, we will use a different approach related to Android
framework.

Android is built on top of the Linux operating system. When it boots up, its underlying Linux boots up
first, which conducts system initialization, including starting essential daemon processes. The booting pro-
cedure, using the root privilege, runs a file called /system/etc/init.sh 1 for part of the initialization.
Therefore, if we can insert a command into init.sh file, we can run our dummy.sh file with the root
privilege.

If we can do it manually, we can simply edit the init.sh, and add a new command in it, but we are
writing an OTA package, so the actions to modify the file need to be coded in our update-binary file.
There are many ways to code that, and we will use the sed command, which is stream editor for filtering
and transforming text. Our idea is to find where the statement "return 0" is inside init.sh, and insert
a command before that, essentially placing the command before the program in init.sh finishes.

sed -i "/return 0/i /system/xbin/dummy.sh" /android/system/etc/init.sh

Explanation:
- "-i": edit files in place.
- "/return 0/": match the line that has the content "return 0".
- "i": insert before the matching line.
- "/system/xbin/dummy.sh": the content to be inserted. We need to copy

the dummy.sh file to the corresponding folder first.
- "/android/system/etc/init.sh": the target file modified by "sed".

Step 2: Build the OTA Package. Constructing an OTA package is quite straightforward. All we need to
do is to put our files in their corresponding folders according to Figure 2. We need to maintain the same
structure as what is shown in the figure, but you do not need to create all the files that are not needed for
our task (such as signature and optional files). You can put the dummy.sh file in any place of your OTA
package, as long as the location matches with your command in the update-binary. After creating the
file structure, we can use the zip command to create a zip file:

zip -r my_ota.zip ./

You should include the file structure of your OTA package in your report. You can run the "unzip
-l" command to do that.

Step 3: Run the OTA Package After building the OTA package, we can provide it to the recovery OS,
which will run it automatically. However, that is how it works with a real recovery OS. In our lab envi-
ronment, we are using Ubuntu as our recovery OS, but it does not have the needed recovery functionality.
Therefore, we have to emulate the recovery functionality. This means, we have to manually unpack the OTA
package (using the unzip command), go to the folder META-INF/com/google/android folder to
find the update-binary file, and run it. If you have written everything correctly, your Android is now
updated. Now, boot up your Android OS, and see whether the dummy file is created inside /system. In
your report, you should include screenshots to provide evidences.

1This is for Android-x86 build; for the ARM build, the file name is different.

SEED Labs – Android Device Rooting Lab 7

5 Task 2: Inject code via app process

In the previous task, we modify the init.sh file to get our injected program to run automatically, and
with the root privilege. This initialization script file is used by the underlying Linux operating system. Once
the Linux part is initialized, Android OS will bootstrap its runtime that is built on top of Linux. We would
like to execute our injected program during this bootstrapping process. The objective of this task is not only
to find a different way to do what we have done in the previous task, but also to learn how Android gets
bootstrapped.

Before conducting this task, please read the guideline in Section 7.1 about the Android booting sequence.
From the guideline, we can see that when the Android runtime bootstraps, it always run a program called
app process, using the root privilege. This starts the Zygote daemon, whose mission is to launch appli-
cations. This means that Zygote is the parent of all app processes. Our goal is to modify app process,
so in addition to launch the Zygote daemon, it also runs something of our choice. Similar to the previous
task, we want to put a dummy file (dummy2) in the /system folder to demonstrate that we can run our
program with the root privilege.

The following sample code is a wrapper for the original app process. We will rename the original
app process binary to app process original, and call our wrapper program app process. In
our wrapper, we first write something to the dummy file, and then invoke the original app process
program.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

extern char** environ;

int main(int argc, char** argv) {
//Write the dummy file
FILE* f = fopen("/system/dummy2", "w");
if (f == NULL) {

printf("Permission Denied.\n");
exit(EXIT_FAILURE);

}
fclose(f);

//Launch the original binary
char* cmd = "/system/bin/app_process_original";
execve(cmd, argv, environ);

//execve() returns only if it fails
return EXIT_FAILURE;

}

It should be noted that when launching the original app process binary using execve(), we should
pass all the original arguments (the argv array) and environment variables (environ) to it.

Step 1. Compile the code. We need to compile the above code in our SEEDUbuntu VM, not inside
the recovery OS or Android OS, as neither of them has the native code development environment installed;
we have installed the Native Development Kit (NDK) in our SEEDUbuntu VM. NDK is a set of tools that
allow us to compile C and C++ code for Android OS. This type of code, called native code, can either be a

SEED Labs – Android Device Rooting Lab 8

stand-alone native program, or invoked by Java code in Android apps via JNI (Java Native Interface). Our
wrapper app process program is a standalone native program, which needs to be compiled using NDK.
For more detailed instructions about NDK, please refer to the instructional manual linked in the web page.

To use NDK, we need to create two files, Application.mk and Android.mk, and place them in
the same folder as your source code. The contents of these two files are described in the following:

The Application.mk file

APP_ABI := x86
APP_PLATFORM := android-21
APP_STL := stlport_static
APP_BUILD_SCRIPT := Android.mk

The Android.mk file

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := <compiled binary name>
LOCAL_SRC_FILES := <all source files>
include $(BUILD_EXECUTABLE)

We run the following commands inside the source folder to compile our code. If the compilation suc-
ceeds, we can find the binary file in the ./libs/x86 folder.

export NDK_PROJECT_PATH=.
ndk-build NDK_APPLICATION_MK=./Application.mk

Step 2. Write the update script and build OTA package. Just like the previous task, we need to write
update-binary to tell the recovery OS what to do. Students need to write the shell script code in this
task. Here are some guidelines:

• We need to copy our compiled binary code to the corresponding location inside Android.

• We need to rename the original app process binary to something else, and then use our code as
app process. The actual name of app process can be either app process32 or app process64,
depending on the architecture of the device. Our Android VM is a 64-bit device, so the name should
be app process64.

Students should then repeat Steps 2 and 3 of the previous task, and describe their observations and
explanation.

6 Task 3: Implement SimpleSU for Getting Root Shell

Now we know how to inject our code into the Android system and gain the root privilege, but we have
not completely achieved our ultimate goal yet. An important reason for users to root their Android devices
is to execute any command of their choice using the root privilege. When building the OTA package, the
commands are already decided; if users want to run other commands after the programs in the OTA package
is executed, they will not be able to do that, unless they can get a shell that runs with the root privilege. Such
a shell is called root shell.

SEED Labs – Android Device Rooting Lab 9

We can launch the root shell using the methods from the previous tasks, but that is problematic: shell
programs are interactive, meaning they will not terminate unless users type an exit command; this will stop
the system booting process, so the OS will never be able to complete its booting sequence. The interest-
ing question is how to run something non-interactive during the booting process that enables us to get an
interactive root shell later on.

If we were on a typical Linux system, we can easily solve the above problem by using the chmod
command to turn on the Set-UID bit of any shell program (e.g. bash) that is owned by the root. Later
on, when any user runs this shell program, the shell will run with the owner’s (i.e. root) privilege. Un-
fortunately, for security reasons, Android has removed the Set-UID mechanism from its underlying Linux
OS since version 4.3 (API Level 18). The official document of security updates on Android 4.3 says the
following:“No setuid/setgid programs. Added support for filesystem capabilities to Android system files
and removed all setuid/setguid programs. This reduces root attack surface and the likelihood of potential
security vulnerabilities.”

Another approach is to start a root daemon during the booting process, and then use this daemon to help
users get a root shell. This is the approach used by some of the popular rooting OTA packages, such as
SuperSU developed by Chainfire. In this task, students will write such a daemon and use it to understand
how it helps users to get a root shell. The main idea of this approach is quite simple. When users want to
get a root shell, they run a client program, which sends a request to the root daemon. Upon receiving the
request, the daemon starts a shell process, and “give” it to the client, i.e., allowing users to control the shell
process. The tricky part is how to let the user control the shell process that is created by the daemon.

For users to control the daemon-generated shell process, they need to be able to control the standard
input and output devices of the shell process. Unfortunately, when the shell process is created, it inherits
its standard input and output devices from its parent process, which is owned by root, so they are not
controllable by the user’s client program. We can find a way to let the client program control these devices,
or we can do it in a different way by giving the client program’s input and output devices to the shell process,
so they also become the input/output devices for the shell process. This way, the user has a complete control
of the shell process: whatever the user types in the input device of the client program will also be fed into
the shell process; whatever the shell process prints to its output device will be showing to client program.

Writing the code to implement the above idea is not easy, as we need to have two essential pieces of
knowledge: (1) how to send the standard input/output devices (file descriptors) to another process, and
(2) once a process receives the file descriptors, how it can use them as its input/output devices. We provide
some background knowledge regarding these.

6.1 Background

File descriptors. Each process in Linux systems typically has three associated I/O devices: standard input
device (STDIN), standard output device (STDOUT), and standard error device (STDERR). These devices
are where the process gets its user input and prints out results and error messages. Processes access these
devices through the standard POSIX application programming interface that uses file descriptors. Basically,
I/O devices are treated just like they are files. The file descriptors for STDIN, STDOUT, and STDERR are 0,
1, and 2, respectively. In this task, we need to pass file descriptors from one process to another.

File descriptors can be passed to another process either via inheritance or explicit sending. When a
parent creates a child process using fork(), all the parent’s file descriptors are automatically inherited by
the child process. Beyond this stage, if the parent wants to share a new file descriptor with its children,
or if two unrelated processes want to share the same file descriptor, they have to explicitly send the file
descriptor, which can be achieved using the Unix Domain Socket. In our code, our client program sends its
file descriptors to the root shell process created by the daemon.

SEED Labs – Android Device Rooting Lab 10

File descriptors can be redirected. The system call dup2(int dest, int src) can redirect the
src file descriptor to the dest one, so the file descriptor entry at index src actually points to the entry at
dest. Therefore, whenever the process uses the src file descriptor, it actually uses the entry stored in the
dest entry. For example, assume that we open a file, and get a file descriptor 5. If we call dup2(5, 1),
we basically let the file descriptor 1 points to 5, causing anything printed out by printf() to be saved to
the file that was just opened. This is because printf() by default prints out everything to the standard
output device, which is represented by the file descriptor 1.

Kernel Space

FD Table 0

0 Standard Input

2 Standard Error
1 Standard Output

3 /etc/passwd
4 Socket0

FD Table 1

0 REDIRECTED

2 REDIRECTED
1 REDIRECTED

3 /dev/null
4 Standard Input of Table 0

Process 0 Process 1

Figure 3: File Descriptor Tables

Figure 3 shows the file descriptor tables of two processes. The table of Process 0 is quite simple. It
has three standard I/O FDs (indices 0, 1, 2), a file descriptor (index 3) for an opened file, and another
file descriptor (index 4) for a socket. Table 1 is a little bit more complicated. It opened a device named
/dev/null, and received a file descriptor from Table 0, and store the descriptor at index 4. Moreover,
Process 1’s standard output and error are redirected to /dev/null, while its standard input is redirected to
the one (index 4) received from Process 0. The consequence of such redirections is that Process 1 will take
exactly the same input as Process 0, but all outputs are abandoned (/dev/null is a standard device that
functions like a black hole: nothing written to it gets out).

Creating new process. In Unix systems, we use the fork() system call to create a new process. The
fork() call returns an integer: for the child process, the return value is 0, while for the parent process, the
return value is the actual process id (which is non-zero) of the newly created child process. The child process
inherits the parent’s data and execution status, as well as the file descriptors. A sample code is provided in
the following:

pid_t pid = fork();
if (pid == 0) {

// This branch will only be executed by the child process.
// Child process code is placed here ...

}
else {

// This branch will only be executed by the parent process.
// Parent process code is placed here ...

}

SEED Labs – Android Device Rooting Lab 11

Client Server

0
C_IN

1
C_OUT

2
C_ERR

Client Server

Send FDs
Child

Process

0
S_IN

1
S_OUT

2
S_ERR

4
C_IN

5
C_OUT

6
C_ERR

fork()

Client
Child

Process
(root shell)

C_IN

C_OUT

C_ERR

0
S_IN

1
S_OUT

2
S_ERR

0
C_IN

1
C_OUT

2
C_ERR

0
S_IN

1
S_OUT

2
S_ERR

2

3

4Connect

1

(a) (c)

(b)

Figure 4: How one process (Client) gains the control of the input/output devices of another process

Passing the File Descriptors. Figure 4 shows how to use the three standard I/O file descriptors to help the
client gain the full control of the root shell created by the server. Initially, as shown in Figure 4(a), the client
and server are running in different processes, while the client has a normal privilege and the server has the
root privilege. Each of them has its own standard I/O FDs 0, 1, 2. In the figure, the client FDs are denoted
as C IN, C OUT, and C ERR, and the server’s FDs are denoted as S IN, S OUT, and S ERR. In Figure 4(b),
we depict how the client and the server work together to help the client get the root privilege.

1. The client connects to the server using the Unix Domain Socket.

2. Upon receiving the request, the server forks a child process and runs a root shell. The child process
inherits all the standard I/O FDs from the parent.

3. The client sends its FDs 0, 1, and 2 to the server’s child process using the Unix Domain Socket. These
FDs will be saved in the table indices 4, 5, and 6, respectively.

4. The child process redirects its FDs 0, 1, 2 to the FDs received from the client, resulting in FDs 4, 5,
and 6 being used the as the standard input, output, and error devices. Since these three devices are
the same as those in the client, essentially, the client process and the server’s child process now share
the same I/O devices (Figure 4(c)). Although the client process is still running with a normal user
privilege, it has the full control of the server’s child process, which is running with the root privilege.

SEED Labs – Android Device Rooting Lab 12

6.2 The Task

Due to the complexity of the client and server program, we provide all the source code to students from our
web site. Please compile the code using NDK, and use the method described in the previous task to build
an OTA package. Students need to demonstrate that they can successfully get the root shell after they have
rooted the Android OS using their OTA package.

Moreover, they need to show that their client process and the shell process do share the same standard
input/output devices. In Unix-like systems, file descriptors of a process can be found in the /proc virtual
file system, inside the /proc/<PID>/fd/ folder, where <PID> is the process id. We can use the ps
command to find out the id of a process.

After completing the task, students need to look at the source code, and indicate where the following
actions occur. Filename, function name, and line number need to be provided in the answer.

• Server launches the original app process binary

• Client sends its FDs

• Server forks to a child process

• Child process receives client’s FDs

• Child process redirects its standard I/O FDs

• Child process launches a root shell

7 Guidelines

7.1 Android Booting Sequence and app process

Figure 5 shows a detailed booting process. In the figure, we assume that the bootloader choses to boot the
Android OS, not the recovery OS.

Phase I: The Kernel. After the bootloader switches the control to Android system, Android kernel will
be loaded and starts initializing the system. Android kernel is in fact a Linux kernel, which handles some
essential parts of the system, such as interruptions, memory protections, scheduling etc. Some Android-
specific functionalities are added to the kernel, including logcat logger and wakelocks.

Phase II: The Init Process. After the kernel is loaded, Init is created as the first user-space process.
It is the starting point for all other processes, and it is running under the root privilege. Init initializes
the virtual file system, detects hardware, then executes script file init.rc to configure the system. The
script init.rc itself mainly focuses on mounting files inside virtual file system and initializes system
daemons. However, it imports some other rc script files for various purposes, such as setting up environment
variables, executing architecture specific commands, and launching zygote. Here are the files imported to
init.rc:

• init.environ.rc: Environment variables are set by init.environ.rc, which provides some
important path-related environment variables. These paths are very important for launching further
processes because many of them will try to access these paths using the corresponding environment
variable names. In one of the lab tasks, we need to pass environment variables to the child process;
now we see why that is needed.

SEED Labs – Android Device Rooting Lab 13

Power On

Boot ROM

Bootloader

Kernel

Init

Zygote

System Servers

Broadcast
ACTION_BOOT_COMPLETED

Boot completed

Linux Kernel with Android Add-ons:
- Interrupt controller
- Memory protection
- Cache
- Scheduling
- Android add-ons (e.g. logcat, wakelocks)

The first process created in system:
- mount virtual filesystem
- execute init.rc script with all other
scripts imported by init.rc
 # finish mounting virtual filesystem
 # set up environment variables
 # launch zygote
 # etc.

Start runtime environment for dalvik VM:
- Is launched by invoking binary app_process
- Is given a process name “zygote”

Places to inject our code

Figure 5: Detailed Booting Process

• init.${ro.hardware}.rc: Some commands or codes are architecture specific. The variable
${ro.hardware} is inherited from the Init process and passed to the init.rc script. On our
Android-x86 VM, it will be “android x86” and the script file init.android x86.rc file will be
invoked. Inside this file, init.sh is called. This init.sh file is the one used in In Task 1, where
we inject the invocation of our code.

• init.${ro.zygote}.rc: This file starts a very important daemon called Zygote. The variable
${ro.zygote} is inherited from the Init binary. It can be zygote32 or zygote64, for 32-bit
and 64-bit architecture, respectively; it can also be zygote32 64 or zygote64 32 for hybrid
modes (mainMode secondaryMode). In our Android-x86 VM, it is init.zygote32.rc.

All these rc script files are stored in an image file, named ramdisk.img on our Android-x86 VM; on
real devices, these script files are inside boot.img, which contains ramdisk.img and the kernel. The
ramdisk.img file will be extracted into the memory while booting up. Making modifications directly on
an image file is not very easy. That is the main reason why we only change the init.sh file in our first
task, because the init.sh file is inside the /system folder, not inside those image files.

Phase III: The Zygote Process. In the init.${ro.zygote}.rc file, a special daemon is launched
by the Init process via the "service zygote /system/bin/app process ..." command

SEED Labs – Android Device Rooting Lab 14

(options are omitted). The command starts a daemon called zygote, which executes the app process
binary. Zygote is the starting point of the Android runtime. It starts the runtime environment of Dalvik or
ART, which are virtual machines that run Java programs. In Android, system servers and most applications
are written in Java, so Zygote is an essential daemon, and it runs with the root privilege.

That makes app process another place to insert our rooting code. The app process file is not a
real binary file; it is a symbolic link, pointing to either app process32 or app process64, depending
on the architecture of the system. Therefore, we just need to change the symbolic link, and let it point to
our code. In our code, we will have two processes, one running our rooting code, and the other running the
original app process code. This approach is commonly used by many existing rooting OTA packages.

7.2 How to unlock the boot loader on a real device

As what is shown in Figure 5, when the power button is pressed, the device firsts goes to a fixed location
in its ROM, and run instructions from there. These instructions will then go to a pre-defined location on
the disk or flash drive to load the bootloader, and pass the control to it. Bootloader then loads the operating
system, and eventually gives the control to the loaded OS.

Most of the Android devices come with two operating systems, an Android OS and a recovery OS.
By default, the bootloader will choose the Android OS to boot; however, if some special key combination
is pressed during the booting, the bootloader will boot the recover OS instead. On Nexus devices, this is
achieved by pressing the “Volume Down” and “Power” buttons together.

Bootloader usually have another functionality that is often disabled by default. This functionality allows
users to replace (often called flash) the OS images on any of the partitions, so users can install a different
recovery OS or Android OS. Most manufacturers do not want users to make such kind of modifications to
their devices, so before shipping devices to customers, they disable the functionality, and hence we say that
“the bootloader is locked”. With a locked bootloader, any attempt to flash the installed OS will be denied by
the bootloader. The following command tries to flash the recovery OS with a locked bootloader; as we can
see, we get an error message:

fastboot flash recovery CustomRecoveryOS.img
sending ’recovery’ (11600 KB) ...
OKAY [0.483s]
writing ’recovery’ ...
FAILED (remote: not supported in locked device)
finished. total time: 0.585s

Some vendors choose to permanently lock the bootloader; in this case, it will be very hard to flash the
OSes on the devices. However, many vendors choose not to do so, and instead, they provide instructions to
unlock the bootloader, so users who really want to flash their devices can still do that. We will show how
to unlock the bootloader. For the demonstration purpose we are using a Nexus device. To unlock it, first
we need to load bootloader of the Nexus device by passing the "adb reboot bootloader" command
or by interrupting the normal boot process using the “volume down” and “power” button combination.
Figure 6(a) shows the bootloader screen of a Nexus 5 device, which indicates that the bootloader is locked.

Bootloader of Nexus devices can be unlocked by using the "fastboot oem unlock" command.
Be very careful while unlocking the bootloader because it will void the manufacturer’s warranty and com-
pletely wipe out personal data on the device. We advise you to backup your personal data before unlock-
ing the bootloader. You can also backup your installed apps and app data by using the "adb backup
-apk -all -f backup.ab" command, which creates a file called backup.ab. After unlocking the
bootloader, you can restore the data by running "adb restore backup.ab". Figure 6(b) shows the

SEED Labs – Android Device Rooting Lab 15

Figure 6: Unlock Bootloader

confirmation screen, and Figure 6(c) shows that the bootloader is now unlocked.

7.3 How to replace the existing recovery OS on a real device

On real devices, to remove the restrictions imposed by the stock recovery OS, such as signature verification,
we have to replace it with a custom recovery OS that does not impose such restrictions. A number of custom
recovery OSes are available on the market. TWRP and ClockworkMod are two of the best choices. We are
going to use TWRP in our description. To flash custom recovery we need to unlock the bootloader of the
device. We assume that you have already unlocked the bootloader. We can boot the custom Recovery OS by
using the "fastboot boot CustomRecoveryOS.img" command, or we can permanently replace
the device’s stock recovery OS with TWRP. The following command flashing the custom recovery OS onto
the recovery partition:

fastboot flash recovery CustomRecoveryOS.img
sending ’recovery’ (11600 KB) ...
OKAY [0.483s]
writing ’recovery’ ...
OKAY [0.948s]
finished. total time: 1.435s

After that, we can boot into the recovery OS by pressing the “volume down” and “power” button com-
bination during the boot-up process. Figure 7(a) shows how to boot into the recovery OS, and Figure 7(b)
shows the user interface of the TWRP recovery OS. As you can see, it has several useful features.

SEED Labs – Android Device Rooting Lab 16

(a) Boot into recovery OS (b) TWRP Custom Recovery OS

Figure 7: Custom Recovery OS

8 Submission and Demonstration

You need to submit a detailed lab report to describe what you have done and what you have observed, includ-
ing screenshots and code snippets (if needed). You also need to provide explanation to the observations that
are interesting or surprising. You are encouraged to pursue further investigation, beyond what is required by
the lab description.

