
This man page was converted to HTML by the bsdi-man cgi from BSDI.
--- -----------------------------

SETUID(7) SETUID(7)

NAME
 setuid - checklist for security of setuid pr ograms

DESCRIPTION
 Writing a secure setuid (or setgid) prog ram is tricky.
 There are a number of possible ways of subve rting such a
 program. The most conspicuous security hole s occur when a
 setuid program is not sufficiently careful t o avoid giving
 away access to resources it legitimately h as the use of.
 Most of the other attacks are basically a ma tter of alter-
 ing the program's environment in unexpected ways and hop-
 ing it will fail in some security-breaching manner. There
 are generally three categories of environ ment manipula-
 tion: supplying a legal but unexpected env ironment that
 may cause the program to directly do somet hing insecure,
 arranging for error conditions that the pro gram may not
 handle correctly, and the specialized subca tegory of giv-
 ing the program inadequate resources in h opes that it
 won't respond properly.

 The following are general considerations of security when
 writing a setuid program.

 [] The program should run with the weakest userid possi-
 ble, preferably one used only by itsel f. A security
 hole in a setuid program running with a highly-privi-
 leged userid can compromise an entire system. Secu-
 rity-critical programs like passwd(1) s hould always
 have private userids, to minimize possib le damage from
 penetrations elsewhere.

 [] The result of getlogin or ttyname may be wrong if the
 descriptors have been meddled with. The re is no fool-
 proof way to determine the controlling te rminal or the
 login name (as opposed to uid) on V7.

 [] On some systems (not ours), the setuid bit may not be
 honored if the program is run by root, so the program
 may find itself running as root.

 [] Programs that attempt to use creat for lo cking can foul
 up when run by root; use of link is p referred when
 implementing locking. Using chmod for locking is an
 obvious disaster.

 [] Breaking an existing lock is very dangero us; the break-
 down of a locking protocol may be symp tomatic of far
 worse problems. Doing so on the basis of the lock
 being `old' is sometimes necessary, bu t programs can

 run for surprising lengths of time on heavily-loaded
 systems.

 [] Care must be taken that user reques ts for i/o are
 checked for permissions using the user's permissions,

 local 1

SETUID(7) SETUID(7)

 not the program's. Use of access is reco mmended.

 [] Programs executed at user request (e.g. shell escapes)
 must not receive the setuid program's per missions; use
 of daughter processes and setuid(getui d()) plus set-
 gid(getgid()) after fork but before exec is vital.

 [] Similarly, programs executed at user requ est must not
 receive other sensitive resources, notably file
 descriptors. Use of closeall(3) or cl ose-on-exec
 arrangements, on systems which have t hem, is recom-
 mended.

 [] Programs activated by one user but handli ng traffic on
 behalf of others (e.g. daemons) shou ld avoid doing
 setuid(getuid()) or setgid(getgid()), sin ce the origi-
 nal invoker's identity is almost certain ly inappropri-
 ate. On systems which permit i t, use of
 setuid(geteuid()) and setgid(getegid()) is recommended
 when performing work on behalf of the sys tem as opposed
 to a specific user.

 [] There are inherent permission problems when a setuid
 program executes another setuid program, since the per-
 missions are not additive. Care should be taken that
 created files are not owned by the wrong person. Use
 of setuid(geteuid()) and its gid counter part can help,
 if the system allows them.

 [] Care should be taken that newly-created files do not
 have the wrong permission or ownership even momentar-
 ily. Permissions should be arranged by u sing umask in
 advance, rather than by creating the file wide-open and
 then using chmod. Ownership can get stic ky due to the
 limitations of the setuid concept, al though using a
 daughter process connected by a pipe can help.

 [] Setuid programs should be especially careful about
 error checking, and the normal respons e to a strange
 situation should be termination, rather t han an attempt

 to carry on.

 [] The following are ways in which the program may be
 induced to carelessly give away its speci al privileges.

 [] The directory the program is started in, or directories
 it may plausibly chdir to, may contain programs with
 the same names as system programs, p laced there in
 hopes that the program will activate a shell with a
 permissive PATH setting. PATH should a lways be stan-
 dardized before invoking a shell (either directly or
 via popen or execvp/execlp).

 [] Similarly, a bizarre IFS setting m ay alter the

 local 2

SETUID(7) SETUID(7)

 interpretation of a shell command in r eally strange
 ways, possibly causing a user-supplied program to be
 invoked. IFS too should always be standa rdized before
 invoking a shell. (Our shell does this a utomatically.)

 [] Environment variables in general cannot be trusted.
 Their contents should never be taken for granted.

 [] Setuid shell files (on systems which i mplement such)
 simply cannot cope adequately with some o f these prob-
 lems. They also have some nasty proble ms like trying
 to run a .profile when run under a suitab le name. They
 are terminally insecure, and must be avoi ded.

 [] Relying on the contents of files placed in publically-
 writeable directories, such as /tmp, is a nearly-incur-
 able security problem. Setuid program s should avoid
 using /tmp entirely, if humanly possible. The sticky-
 directories modification (sticky bit on f or a directory
 means only owner of a file can remove it) (we have this
 feature) helps, but is not a complete sol ution.

 [] A related problem is that spool direct ories, holding
 information that the program will trust later, must
 never be publically writeable even if th e files in the
 directory are protected. Among other sin ister manipu-
 lations that can be performed, note that on many Unixes
 (not ours), a core dump of a setuid progr am is owned by
 the program's owner and not by the user r unning it.

 [] The following are unusual but possible er ror conditions

 that the program should cope with proper ly (resource-
 exhaustion questions are considered s eparately, see
 below).

 [] The value of argc might be 0.

 [] The setting of the umask might not be sen sible. In any
 case, it should be standardized when crea ting files not
 intended to be owned by the user.

 [] One or more of the standard descript ors might be
 closed, so that an opened file might get (say) descrip-
 tor 1, causing chaos if the program tr ies to do a
 printf.

 [] The current directory (or any of its p arents) may be
 unreadable and unsearchable. On many s ystems pwd(1)
 does not run setuid-root, so it can f ail under such
 conditions.

 [] Descriptors shared by other processes (i. e., any that
 are open on startup) may be manipulated i n strange ways
 by said processes.

 local 3

SETUID(7) SETUID(7)

 [] The standard descriptors may refer to a t erminal which
 has a bizarre mode setting, or which ca nnot be opened
 again, or which gives end-of-file on any read attempt,
 or which cannot be read or written succes sfully.

 [] The process may be hit by interrupt, qu it, hangup, or
 broken-pipe signals, singly or in fast su ccession. The
 user may deliberately exploit the ra ce conditions
 inherent in catching signals; ignoring si gnals is safe,
 but catching them is not.

 [] Although non-keyboard signals cannot be sent by ordi-
 nary users in V7, they may perhaps be sen t by the sys-
 tem authorities (e.g. to indicate that the system is
 about to shut down), so the possibili ty cannot be
 ignored.

 [] On some systems (not ours) there may be a n alarm signal
 pending on startup.

 [] The program may have children it did not create. This
 is normal when the process is part of a p ipeline.

 [] In some non-V7 systems, users can change the ownerships
 of their files. Setuid programs should a void trusting
 the owner identification of a file.

 [] User-supplied arguments and input data m ust be checked
 meticulously. Overly-long input stored in an array
 without proper bound checking can easil y breach secu-
 rity. When software depends on a file be ing in a spe-
 cific format, user-supplied data sho uld never be
 inserted into the file without being c hecked first.
 Meticulous checking includes allowing for the possibil-
 ity of non-ASCII characters.

 [] Temporary files left in public directori es like /tmp
 might vanish at inconvenient times.

 [] The following are resource-exhaustion possibilities
 that the program should respond properly to.

 [] The user might have used up all of his allowed pro-
 cesses, so any attempt to create a new on e (via fork or
 popen) will fail.

 [] There might be many files open, exhaustin g the supply
 of descriptors. Running closeall(3), on systems which
 have it, is recommended.

 [] There might be many arguments.

 [] The arguments and the environment togethe r might occupy
 a great deal of space.

 local 4

SETUID(7) SETUID(7)

 [] Systems which impose other resource l imitations can
 open setuid programs to similar resou rce-exhaustion
 attacks.

 [] Setuid programs which execute ordinary pr ograms without
 reducing authority pass all the above pr oblems on to
 such unprepared children. Standardizing the execution
 environment is only a partial solution.

SEE ALSO
 closeall(3) standard(3)

HISTORY

 Locally written, although based on outside contributions.

BUGS
 The list really is rather long... and p robably incom-
 plete.

 [] Neither the author nor the Universit y of Toronto
 accepts any responsibility whatever for t he use or non-
 use of this information.

 local 5

