
SEED Labs – VPN Tunneling Lab 1

VPN Tunneling Lab

Copyright © 2020 Wenliang Du, All rights reserved.
Free to use for non-commercial educational purposes. Commercial uses of the materials are prohibited.
The SEED project was funded by multiple grants from the US National Science Foundation.

1 Overview

A Virtual Private Network (VPN) is a private network built on top of a public network, usually the Internet.
Computers inside a VPN can communicate securely, just like if they were on a real private network that is
physically isolated from outside, even though their traffic may go through a public network. VPN enables
employees to securely access a company’s intranet while traveling; it also allows companies to expand their
private networks to places across the country and around the world.

The objective of this lab is to help students understand how VPN works. We focus on a specific type of
VPN (the most common type), which is built on top of the transport layer. We will build a very simple VPN
from the scratch, and use the process to illustrate how each piece of the VPN technology works. A real VPN
program has two essential pieces, tunneling and encryption. This lab only focuses on the tunneling part,
helping students understand the tunneling technology, so the tunnel in this lab is not encrypted. There is
another more comprehensive VPN lab that includes the encryption part. The lab covers the following topics:

• Virtual Private Network
• The TUN/TAP virtual interface
• IP tunneling
• Routing

Readings and videos. Detailed coverage of the TUN/TAP virtual interface and how VPN works can be
found in the following:

• Chapter 19 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd Edition,
by Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 8 of the SEED Lecture, Internet Security: A Hands-on Approach, by Wenliang Du. See details
at https://www.handsonsecurity.net/video.html.

Related lab. This lab only covers the tunneling part of a VPN, while a complete VPN also needs to protect
its tunnel. We have a separate lab, called VPN Lab, which is a comprehensive lab, covering both tunneling
and the protection part. Students can work on this tunneling lab first. After learning the PKI and TLS, they
can then move on to the comprehensive VPN lab.

Lab environment. This lab has been tested on our pre-built Ubuntu 16.04 VM, which can be downloaded
from the SEED website.



SEED Labs – VPN Tunneling Lab 2

2 Task 1: Network Setup

We will create a VPN tunnel between a computer (client) and a gateway, allowing the computer to securely
access a private network via the gateway. We need at least three VMs: VPN client (also serving as Host
U), VPN server (the gateway), and a host in the private network (Host V). The network setup is depicted in
Figure 1.

`

`
192.168.60.101

User

VPN Client
Gateway

(VPN Server)

192.168.60.1

Host U

Host V

“NAT Network” Adapter

“Internal Network” Adapter

10.0.2.7 10.0.2.8

Figure 1: VM setup for this lab

In practice, the VPN client and VPN server are connected via the Internet. For the sake of simplicity,
we directly connect these two machines to the same LAN in this lab, i.e., this LAN simulates the Internet.
We will use the "NAT Network" adaptor for this LAN. The third machine, Host V, is a computer inside
the private network. Users on Host U (outside of the private network) want to communicate with Host V via
the VPN tunnel. To simulate this setup, we connect Host V to VPN Server (also serving as a gateway) via
an "Internal Network". In such a setup, Host V is not directly accessible from the Internet; nor is it
directly accessible from Host U.

VMs attached to the "NAT Network" network will automatically get their IP addresses from the
DHCP server, but for VMs on the "Internal Network", VirtualBox does not provide DHCP, so the
VMs must be statically configured. To do this, click the network icon on the top-right corner of the desktop,
and select "Edit Connections". You will see a list of "Wired connections", one for each of the
network adaptors used by the VM. For Host V, there is only one connection, but for VPN Server, we will see
two. To make sure that you pick the one attached to the Internal Network" adapter, You can check
the MAC address displayed in the pop-up window after you have picked a connection to edit. Compare this
MAC address with the one that you get from ifconfig, and you will know whether you have picked the
right connection or not.

After you have selected the right connection to edit, pick the "ipv4 Settings" tab and select the
"Manual" method, instead of the default "Automatic (DHCP)". Click the "Add" button to set up
the new IP address for the VM. See Figure 2 for details.

Testing. Please conduct the following testings to ensure that the network setup is performed correctly:

• Host U can communicate with VPN Server.
• VPN Server can communicate with Host V.



SEED Labs – VPN Tunneling Lab 3

Figure 2: Manually set up the IP address for the "Internal Network" adaptor on VPN Server.

• Host U should not be able to communicate with Host V.

3 Task 2: Create and Configure TUN Interface

The VPN tunnel that we are going to build is based on the TUN/TAP technologies. TUN and TAP are virtual
network kernel drivers; they implement network device that are supported entirely in software. TAP (as in
network tap) simulates an Ethernet device and it operates with layer-2 packets such as Ethernet frames;
TUN (as in network TUNnel) simulates a network layer device and it operates with layer-3 packets such as
IP packets. With TUN/TAP, we can create virtual network interfaces.

A user-space program is usually attached to the TUN/TAP virtual network interface. Packets sent by an
operating system via a TUN/TAP network interface are delivered to the user-space program. On the other
hand, packets sent by the program via a TUN/TAP network interface are injected into the operating system
network stack. To the operating system, it appears that the packets come from an external source through
the virtual network interface.

When a program is attached to a TUN/TAP interface, IP packets sent by the kernel to this interface will
be piped into the program. On the other hand, IP packets written to the interface by the program will be
piped into the kernel, as if they came from the outside through this virtual network interface. The program
can use the standard read() and write() system calls to receive packets from or send packets to the
virtual interface.

The objective of this task is to get familiar with the TUN/TAP technology. We will conduct several
experiments to learn the technical details of the TUN/TAP interface. We will use the following Python
program as the basis for the experiments, and we will modify this base code throughout this lab.

Listing 1: Creating a TUN interface (tun.py)
#!/usr/bin/python3

import fcntl
import struct
import os
import time
from scapy.all import *



SEED Labs – VPN Tunneling Lab 4

TUNSETIFF = 0x400454ca
IFF_TUN = 0x0001
IFF_TAP = 0x0002
IFF_NO_PI = 0x1000

# Create the tun interface
tun = os.open("/dev/net/tun", os.O_RDWR)
ifr = struct.pack(’16sH’, b’tun%d’, IFF_TUN | IFF_NO_PI)
ifname_bytes = fcntl.ioctl(tun, TUNSETIFF, ifr)

# Get the interface name
ifname = ifname_bytes.decode(’UTF-8’)[:16].strip("\x00")
print("Interface Name: {}".format(ifname))

while True:
time.sleep(10)

3.1 Task 2.a: Name of the Interface

We will run the tun.py program on Host U. Make the above tun.py program executable, and run it using
the root privilege. See the following commands:

// Make the Python program executable
$ chmod a+x tun.py

// Run the program using the root privilege
$ sudo ./tun.py

Once the program is executed, it will block. You can go to another terminal to print out all the interfaces
on the machine. Please report your observation after running the following command:

$ ip address

You should be able to find an interface called tun0. Your job in this task is to change the tun.py
program, so instead of using tun as the prefix of the interface name, use your last name as the prefix. For
example, if your last name is smith, you should use smith as the prefix. If your last name is long, you can
use the first five characters. Please show how your results.

3.2 Task 2.b: Set up the TUN Interface

At this point, the TUN interface is not usable, because it has not been configured yet. There are two things
that we need to do before the interface can be used. First, we need to assign an IP address to it. Second, we
need to bring up the interface, because the interface is still in the down state. We can use the following two
commands for the configuration:

// Assign IP address to the interface
$ sudo ip addr add 192.168.53.99/24 dev tun0

// Bring up the interface
$ sudo ip link set dev tun0 up



SEED Labs – VPN Tunneling Lab 5

To make life easier, students can add the following two lines of code to tun.py, so the configuration
can be automatically performed by the program.

os.system("ip addr add 192.168.53.99/24 dev {}".format(ifname))
os.system("ip link set dev {} up".format(ifname))

After running the two commands above, run the "ip address" command again, and report your
observation. How is it different from that before running the configuration commands?

3.3 Task 2.c: Read from the TUN Interface

In this task, we will read from the TUN interface. Whatever coming out from the TUN interface is an IP
packet. We can cast the data received from the interface into a Scapy IP object, so we can print out each
field of the IP packet. Please use the following while loop to replace the one in tun.py:

while True:
# Get a packet from the tun interface
packet = os.read(tun, 2048)
if True:

ip = IP(packet)
print(ip.summary())

Please run the revised tun.py program on Host U, configure the TUN interface accordingly, and then
conduct the following experiments. Please describe your observations:

• On Host U, ping a host in the 192.168.53.0/24 network. What are printed out by the tun.py
program? What has happened? Why?

• On Host U, ping a host in the internal network 192.168.60.0/24, Does tun.py print out
anything? Why?

3.4 Task 2.d: Write to the TUN Interface

In this task, we will write to the TUN interface. Since this is a virtual network interface, whatever is written
to the interface by the application will appear in the kernel as an IP packet.

We will modify the tun.py program, so after getting a packet from the TUN interface, we construct a
new packet based on the received packet. We then write the new packet to the TUN interface. How the new
packet is constructed is up to students. The code in the following shows an example of how to write an IP
packet to the TUN interface.

# Send out a spoof packet using the tun interface
newip = IP(src=’1.2.3.4’, dst=ip.src)
newpkt = newip/ip.payload
os.write(tun, bytes(newpkt))

Please modify the tun.py code according to the following requirements:

• After getting a packet from the TUN interface, if this packet is an ICMP echo request packet, construct
a corresponding echo reply packet and write it to the TUN interface. Please provide evidence to show
that the code works as expected.

• Instead of writing an IP packet to the interface, write some arbitrary data to the interface, and report
your observation.



SEED Labs – VPN Tunneling Lab 6

4 Task 3: Send the IP Packet to VPN Server Through a Tunnel

In this task, we will put the IP packet received from the TUN interface into the UDP payload field of a new
IP packet, and send it to another computer. Namely, we place the original packet inside a new packet. This
is called IP tunneling. The tunnel implementation is just standard client/server programming. It can be built
on top of TCP or UDP. In this task, we will use UDP. Namely, we put an IP packet inside the payload field
of a UDP packet.

The server program tun server.py. We will run tun server.py program on VPN Server. This
program is just a standard UDP server program. It listens to port 9090 and print out whatever is received.
The program assumes that the data in the UDP payload field is an IP packet, so it casts the payload to a
Scapy IP object, and print out the source and destination IP address of the enclosed IP packet.

Listing 2: tun server.py

#!/usr/bin/python3

from scapy.all import *

IP_A = "0.0.0.0"
PORT = 9090

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((IP_A, PORT))

while True:
data, (ip, port) = sock.recvfrom(2048)
print("{}:{} --> {}:{}".format(ip, port, IP_A, PORT))
pkt = IP(data)
print(" Inside: {} --> {}".format(pkt.src, pkt.dst))

Implement the client program tun client.py. First, we need to modify the TUN program tun.py.
Let’s rename it, and call it tun client.py. Sending data to another computer using UDP can be done
using the standard socket programming.

Replace the while loop in the program with the following: The SERVER IP and SERVER PORT
should be replaced with the actual IP address and port number of the server program running on VPN
Server.

# Create UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
# Get a packet from the tun interface
packet = os.read(tun, 2048)
if True:

# Send the packet via the tunnel
sock.sendto(packet, (SERVER_IP, SERVER_PORT))

Testing. Run the tun server.py program on VPN Server, and then run tun client.py on Host
U. To test whether the tunnel works or not, ping any IP address belonging to the 192.168.53.0/24



SEED Labs – VPN Tunneling Lab 7

network. What is printed out on VPN Server? Why?
Our ultimate goal is to access the hosts inside the private network 192.168.60.0/24 using the

tunnel. Let us ping Host V, and see whether the ICMP packet is sent to VPN Server through the tunnel.
If not, what are the problems? You need to solve this problem, so the ping packet can be sent through
the tunnel. This is done through routing, i.e., packets going to the 192.168.60.0/24 network should
be routed to the TUN interface and be given to the tun client.py program. The following command
shows how to add an entry to the routing table:

$ sudo ip route add <network> dev <interface> via <router ip>

Please provide proofs to demonstrate that when you ping an IP address in the 192.168.60.0/24
network, the ICMP packets are received by tun server.py through the tunnel.

5 Task 4: Set Up the VPN Server

After tun server.py gets a packet from the tunnel, it needs to feed the packet to the kernel, so the kernel
can route the packet towards its final destination. This needs to be done through a TUN interface, just like
what we did in Task 2. Please modify tun server.py, so it can do the following:

• Create a TUN interface and configure it.
• Get the data from the socket interface; treat the received data as an IP packet.
• Write the packet to the TUN interface.

Before running the modified tun server.py, we need to enable the IP forwarding. Unless specifi-
cally configured, a computer will only act as a host, not as a gateway. VPN Server needs to forward packets
between the private network and the tunnel, so it needs to function as a gateway. We need to enable the
IP forwarding for a computer to behave like a gateway. IP forwarding can be enabled using the following
command:

$ sudo sysctl net.ipv4.ip_forward=1

Testing. If everything is set up properly, we can ping Host V from Host U. The ICMP echo request
packets should eventually arrive at Host V through the tunnel. Please show your proof. It should be noted
that although Host V will respond to the ICMP packets, the reply will not get back to Host U, because we
have not set up everything yet. Therefore, for this task, it is sufficient to show (using Wireshark) that the
ICMP packets have arrived at Host V.

6 Task 5: Handling Traffic in Both Directions

After getting to this point, one direction of your tunnel is complete, i.e., we can send packets from Host U
to Host V via the tunnel. If we look at the Wireshark trace on Host V, we can see that Host V has sent out
the response, but the packet gets dropped somewhere. This is because our tunnel is only one directional; we
need to set up its other direction, so returning traffic can be tunneled back to Host U.

To achieve that, our TUN client and server programs need to read data from two interfaces, the TUN
interface and the socket interface. All these interfaces are represented by file descriptors, so we need to
monitor them to see whether there are data coming from them. One way to do that is to keep polling them,
and see whether there are data on each of the interfaces. The performance of this approach is undesirable,



SEED Labs – VPN Tunneling Lab 8

because the process has to keep running in an idle loop when there is no data. Another way is to read from
an interface. By default, read is blocking, i.e., the process will be suspended if there are no data. When
data become available, the process will be unblocked, and its execution will continue. This way, it does not
waste CPU time when there is no data.

The read-based blocking mechanism works well for one interface. If a process is waiting on multiple
interfaces, it cannot block on just one of the interfaces. It has to block on all of them altogether. Linux has a
system call called select(), which allows a program to monitor multiple file descriptors simultaneously.
To use select(), we need to store all the file descriptors to be monitored in a set, and then we give the
set to the select() system call, which will block the process until data are available on one of the file
descriptors in the set. We can check which file descriptor has received data. In the following Python code
snippet, we use select() to monitor a TUN and a socket file descriptor.

# We assume that sock and tun file descriptors have already been created.

while True:
# this will block until at least one interface is ready
ready, _, _ = select([sock, tun], [], [])

for fd in ready:
if fd is sock:

data, (ip, port) = sock.recvfrom(2048)
pkt = IP(data)
print("From socket <==: {} --> {}".format(pkt.src, pkt.dst))
... (code needs to be added by students) ...

if fd is tun:
packet = os.read(tun, 2048)
pkt = IP(packet)
print("From tun ==>: {} --> {}".format(pkt.src, pkt.dst))
... (code needs to be added by students) ...

Students can use the code above to replace the while loop in their TUN client and server programs.
The code is incomplete; students are expected to complete it.

Testing. Once this is done, we should be able to communicate with Machine V from Machine U, and the
VPN tunnel (un-encrypted) is now complete. Please show your wireshark proof using about ping and
telnet commands. In your proof, you need to point out how your packets flow.

7 Task 6: Tunnel-Breaking Experiment

On Host U, telnet to Host V. While keeping the telnet connection alive, we break the VPN tunnel by
stopping the tun client.py or tun server.py program. We then type something in the telnet
window. Do you see what you type? What happens to the TCP connection? Is the connection broken?

Let us now reconnect the VPN tunnel (do not wait for too long). We will run the tun client.py
and tun server.py programs again, and set up their TUN interfaces and routing (this is where you can
find that including the configuration commands in the programs will make your life much easier). Once the
tunnel is re-established, what is going to happen to the telnet connection? Please describe and explain
your observations.



SEED Labs – VPN Tunneling Lab 9

8 Task 7: Routing Experiment on Host V

In an real VPN system, the traffic will be encrypted (this part is not covered in this lab). That means the
return traffic must come back from the same tunnel. How to get the return traffic from Host V to the VPN
server is non-trivial. Our setup simplifies the situation. In our setup, Host V’s routing table has a default
setting: packets going to any destination, except the 192.168.60.0/24 network, will be automatically
routed to the VPN server.

In the real world, Host V may be a few hops away from the VPN server, and the default routing entry
may not guarantee to route the return packet back to the VPN server. Routing tables inside a private network
have to be set up properly to ensure that packets going to the other end of the tunnel will be routed to the
VPN server. To simulate this scenario, we will remove the default entry from Host V, and add a more specific
entry to the routing table, so the return packets can be routed back to the VPN server. The network prefix for
this entry should have no less than 24 bits. Students can use the following commands to remove the default
entry and add a new entry:

// Delete the default entry
$ sudo ip route del 0.0.0.0/0

// Add an entry
$ sudo ip route add <network> dev <interface> via <router ip>

9 Task 8: Experiment with the TUN IP Address

On Host U, change its TUN interface’s IP address to 192.168.30.99 and see how it works. Namely the
IP addresses set on the TUN interface on the client and server sides are from two different networks.

You will find out that the packets cannot arrive at Host V. They must be dropped somewhere along the
path, and your task is to find out where the packets get dropped and how you can solve this problem. More
specifically, you should answer the following questions and demonstrate your solution:

• Where are the packets dropped? Please provide evidence using Wireshark traces.
• Why are the packets dropped? See the hint below.
• How to solve this problem? You are not allowed to change the IP address on any of the TUN inter-

faces? Please demonstrate that your solution works.

Hint: To understand the result of this experiment, students need to understand the reverse path filtering
mechanism and the symmetric routing rule implemented inside Linux kernel. If this rule is not covered in
your class, see the explanation and demonstration regarding this rule from the SEED lecture titled Inter-
net Security: A Hands-on Approach: Lecture 32 in Section 4 (Spoofing Prevention on Routers). See the
following link for details: https://www.handsonsecurity.net/video.html.

10 Task 9: Experiment with the TAP Interface

In this task, we will do a simple experiment with the TAP interface, so students can get some idea of this
type of interface. The way how the TAP interface works is quite similar to the TUN interface. The main
difference is that the kernel end of the TUN interface is hooked to the IP layer, while the kernel end of the
TAP interface is hooked to the MAC layer. Therefore, the packet going through the TAP interface includes
the MAC header, while the packet going through the TUN interface only includes the IP header. Other than



SEED Labs – VPN Tunneling Lab 10

getting the frames containing IP packets, using the TAP interface, applications can also get other types of
frames, such as ARP frames.

We will use the following program for our experiment. The code for creating the TUN interface and
TAP interface is quite similar; the only difference is in the interface type. For TAP interfaces, we use
IFF TAP, while for TUN, we use IFF TUN. The rest of the code are the same, so we do not include them
in the following. The way to configure a TAP interface is exactly the same as the way to configure a TUN
interface.

...

tap = os.open("/dev/net/tun", os.O_RDWR)
ifr = struct.pack(’16sH’, b’tap%d’, IFF TAP | IFF_NO_PI)
ifname_bytes = fcntl.ioctl(tap, TUNSETIFF, ifr)
ifname = ifname_bytes.decode(’UTF-8’)[:16].strip("\x00")
...

while True:
packet = os.read(tap, 2048)
if True:

ether = Ether(packet)
print(ether.summary())

The code above simply reads from the TAP interface. It then casts the data to a Scapy Ether object,
and prints out all its fields. Try to ping an IP address in the 192.168.53.0/24 network; report and
explain your observations.

To make this more interesting, once you get an ethernet frame from the TAP interface, you can check
whether it is an ARP request; if it is, generate a corresponding ARP reply and write it to the TAP interface.
A skeleton code is provided in the following:

while True:
packet = os.read(tun, 2048)
if True:

print("--------------------------------")
ether = Ether(packet)
print(ether.summary())

# Send a spoofed ARP response
if ARP in ether and ether[ARP].op == 1 :

arp = ether[ARP]
newether = Ether( ... )
newarp = ARP(op=2, ... )
newpkt = newether/newarp

print("***** Fake response: {}".format(newpkt.summary()))
os.write(tun, bytes(newpkt))

To test your TAP program, you can run the arping command on any IP address. This command sends
out an ARP request for the specified IP address via the specified interface. If your spoof-arp-reply TAP
program works, you should be able to get a response. See the following examples.

arping -I tap0 192.168.53.33
arping -I tap0 1.2.3.4



SEED Labs – VPN Tunneling Lab 11

11 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.


